@y ] @]
@@MM]] RESN|G

G=oxll plxllg (MU plezll plaAS Ly LA a3 Zas £ 32 23les

aoaxD BLL .3 slaclg ion 5




=S s

LU (ISaIlg aus =l 2L

MIMIQQDIMLUIMMUMM&Q}C&LJ@J&D

:31aclg Ao 5

ao2xD (LC .3



oo A Al B g gl QT e TS5 tlalels WUl S sl e iy all G0 3
PREEI S PPy (FCHEN OO RPP P RN (BN [JEF- U v P RESIP P = ES [PEA B[R
oAb el 0scke 500 (o ST ey Sodowry eyl Sl ST B 1 ERUI 25 ez 21 B
52,3 5 $hall 3l s Sl (0 SV D300 25 oyl o hedned! 5l ol L )
el G p Sl Gl (bl e Wb ez L 1530 Ll s jailases Slias 25 ¢ ol
a1y (Sl g (oSl Sl el 3y gl
s 85U oy LI ey (Grondl ool YN (all) oldauo VTSI GT Sl yo
hpnd Ll G oy Ao A8 50 S o chadladl SN (6 e Blghazy iy jadl G301 Ao
A Tl G iy bl e sl 31,8 ) g e Jlamadl 0580 o Lo
slall i ol

Lol Ll A 5 U5 Blay ey ol B o )lie (yo kol o o lano W1 ST ks 05
S o sliadl n s oyl el LRI Gaslly el eliadl o
S G (DS it Yl U Ey el A e e el el
Lk 03 ) msliall o dodall IS e Gy pall B 0o o G e llano VT ST 55
Seondl pally JYI el 23S plasely L s

SIS Ayl A1 Jlree Gl b 2SI liialls SV o 31 0 Ul 58 5l
Sl O 136 ol Jooms Loty Shae iy M o ( Sy conliadl 2,201 e ollasYl
SIS Ly e Ll 335 W bSU e e ol

.alaa.taima@qu.edu.iq

el oo V1 el &y pall A1 s Gty 01 2 oo JS ST el 0 J

Méﬂ\$ﬂ|6W\¢\;yM\\hé@)ﬂ\w\db\ Jlmodl 1 ol o )l 25,

QU s 5 UL ey Goandl (el S Wl Jlome Bermo)s o (6 50es J) LY Al
elodll Wl o b gt ¥y OUSI) s ¢ Lzl

Zouxd M. 3

Cologlr ol LiaglgiSig wagLall pgle 21
S,/ Lslall izola


mailto:alaa.taima@qu.edu.iq

cbginoll

Machine Learning and NLP éwcllaclducuinildyge Ul dnlle ollg JII ol (1

7 For Arabic
12 o o LLAJI roluudl @iiuni ga Lo
12 e POS Lc cilollell ghg cilduuni JAC

13 e ool aaleodlg bl o

1 S PP iy jLAg Ul
1 o Julin il guiin
1D e e it UlodAJl (o
1 s 2alodl Ly
8- 2 N SVM
18 it s 2390l fouud
10 L 2ag.0JU §uil
2L éuslaLil aSULUI
2L eliiwll
Arabic NLP: laJglag cibani)l :dwycll 6l ducudn)l dugell dalleodl (2
27 Challenges and Their Solutions
7 Gbaall
P37 2PN Jolall
X B Juadiiil éadljl :1 6glnaall

28 e Sl JAgostl o 20l :2 gl

28 e e SlodAU huuy joj :3 6ghAll
S G nll auAgi :4 6ghAll

7 Camel dcio 30 2 joll

dygill dalleoll 8 yuloledl JII pleill Gaimel 2160 dy e lily wlegono (3
Useful Arabic Datasets for Machine Learning Engineers working in éucinll



20 e G pall ubly wlegoao

20 e e e MASADER (1
20 e e Arabic Reviews Dataset (2
20 e HARD-Arabic-Dataset (3
20 e ettt ettt ASTD (4
O S ArSAS (5
B0 i Arabic Sentiment Twitter Corpus (6
B0 Jamalon Arabic Books Dataset (7
0 Arabizi (8
3 R Arabic Poetry Dataset (6th — 21st century) (9
B Arabic Learner Corpus (ALC) (10
31 Arabic BERT Dataset (11
31 PPt OntoNotes (12
3 Arabic Question Answering Datasets (13
32 ...... dw ol Gg i e Gpadl Gycild agl hay dygitoll bl wlegono
B e Arabic Handwritten Digits (1
3 Arabic Handwritten Characters Dataset (2
3 Yarmouk Arabic OCR (3
Arabic Sentiment Analysis using JUI pleil poladiwl duy yell peliioll Judni (4
K ST TRTRTTRR Machine Learning
33 i oLl cgono
1 2 bl BlLuAiiulg 6uiAodl al il
7 wail) dduiell dalleoli
36 et dalino clial yelitodl Judai
] Glagl jlaasl
7 2 aWilguire)l ULl @ino

37 e (aganJl 2acio) Naive Bayes winno



B8 ettt e, ol lanioll &

38 i s eliiw I
Sentiment Analysis of Arabic (wlayedl) Gl gall ably jeliodl Judaj (5
K L Text Data (Tweets)
1 Goadoll
30 Lt wblwlg Jloc Ul oas
B2 o Ol ol duvaia
B2 .ot e, <l jrodl £lowul

B2 oo e e, awAgil

B2 doaAiutel ygl cilido
B3 cllAnollg bl cilcgono
e wuJall by

BA ... e JWiAl bl

B oo ab ol dalleoll
B5 .o et ate e LUl @UA L

B5 ..o e @A lg v jluAg il

D .. e e WloldAJl doild

BB ..o ettt ettt et e e ate e ere e st

BB ... Glwagl jlani i =1 8y gl

BT oot e, U @b @ino :2 dy gl

BT oo e JuiAl bl @i

BT eliiwl
Generate Arabic Poems using @.iocl ppdeil polaaiwl duugcll 25lndll adgi (6
L Deep Learning
L bl Jronl
B L. oin jUuAg Ul



B0 s 6 e duyjai wleda Joo

] R leda bl
B0 ettt e lesall juialg uyjai
D e e el

L P TPPP P PyTorch olaaiwl 6A Ll &y yci
DB e e e oy yadl

B e ettt ettt el Jion
Arabic Poems @rocll pleill plariwl ils jlji wglwl dw el alnéll adgi (7
59 i, Generation in the Style of Nizar Qabbani using Deep Learning
1 Guiioa o el
B0 .ttt 6w ol e Ul Buungina
T bl prAni
3 U agilall aloleoll A
B L, Jebil a8
[ S OO 2gAll
B3 ettt e et 6aundll algo
B4 et et et ddutell dalle ol
B i dadl Jgan

B ettt e roud J Ul slo e juo Ji

7 ettt e duuncll 6A LI clu

B 7 e e GllAaoll

2 Dataloader juisl

70 e e duuncll 6A LI clu
72 e GeLAlg Lolo Dl JLiriil by e

73 e e duncl oAl iy jai
73 e e wyjaidl abla



7 e et s Aol dngs
7 e s lnéll 21 Jg]
7 e et s v el

78 e e, du o)l gyl 8uliA dudus

p£ TS 82un8 21Jg)

B L el I

gt ll dallcollg JII pleil pladlwl pyyAll gdll go clegiigo daie) (8
Modeling Topics from The Nobel Quran using Machine Learning & aicuinll

.77 NLP
83 i Jailoll gagodl) ' moses’ wgo' ppoi:l JUo

84 e, JaoJl gagoddt heaven' “dia’ ol :2 JUo

B &g uitodl 2l duwbw il llnioll
85 it I e illg 094l Jluuo & pis
85 e .U JUALA oy A1 il o 8ued J @A o Ul 6y .1

B ettt ettt et e et e et e et e e aae e &l juoyi .2

85 e N6 pmoll Licoll ¢l cilodAl ayaail) @ag il cilods dljl .3

B ettt e (&lnlgl) LA gl Ll .4

8 e Word2vec gi3g.0J cliug wujaillias .5

87 i dunnioll galodl jgni duido
BT Github (8 2g4JI
Arabic Topic ywpuua jual wbly dcgoan (8 ducll @udlgoll @ini (9
88 Classification On The Hespress News Dataset
< - 2N Aol 6oado
B0 L éusldiA i Ul ULl Juda
00 L.t ULl @A

L WordCloud o



O e e s TF-IDF
02 i daaoil
- 2agoll i
05 it eliw I
Arabic books éducunll dugill dalleoll plaaiwl dwpc)l i)l bdni (10
00 e classification using NLP
06 e nin s @bl 6cgono
08 i Gblul db ol dalle ol
08 e e @dg Il calodA dljlg jao Ul
00 e o LA plwudl @rini
99 e .8 ni3 o J8i (Lo gind (Ul cledAl dljlg Jan
00 et et a9 ynioll sl
200 ..., (D145 J8llg 34T Al cilodAl) 448 JAJ clodAl JIu4T
L0 L e UlolAJl dulauy
L0 Ul jrodl dwaia
1 172 24g.0J <lu
K0 SR b @l
103 e e tea e e e e e e e e e ¢hallainoll
L0 e s SVM gigoJ
L0 ..ot e, élguite )l dulédl @ Ag.oJ
B0 e e Picil pagod
L0 PP LSTM
206 .ot aaaaan asliilJig Word2vec
107 oottt eliw i

Automatic Arabic Text yglu ladiwl pcdl yalld JBlUl gaalll (11
108 oot Summarization using Python



0 P duwbw il aulihioll
100 ..ottt il
100 .ot Juial
How to build Twitter bot using §ioc)lfolcil polaaiwl Jigi cigy bl duars (12
18 72 Ut deep learning
1 1 2 lgall

1 bl gig ol
113 i 6u pnoJl 6 o)l ULl polaA ol g ageddl A
D04 e s bl cgono
PP a8l hiAll

107 i agdl yaunAaj
LT e e Jugi wbl Jjid

120 ..ot e, eliiwl
Deep Learning & adl khay dugidoll dujyc)l léjllg Groc) rolcil (13
B2 Handwritten Arabic Digits
120 i CSV «lo 1o al il (1
122 0 Joall alleod aley i 6L bl éui JI Jugaidl (2
122 e W unladl dé16nJl jano bl jUal alacl (3
123 s Lua) duy jail jgnll hang dalleo (4
1 JJo Ul yadl
125 ottt 23g.ol polaiwl
Image classification for Arabic ayl hay ugifell (Jycll G all jgnll GLini (14
| 2 PR handwritten character
10 anlall
127 e Julail
120 L 2igol JuAasi le jgicl

137 ...... Keras Tuner with Arabic MNIST éw jcJIMNIST &o Keras Tuner (15



137 o bl dcgono Jiond
138 Lttt e duy ol olé Ul ouw
130 it e JuAdiill 6alelg ouan il
130 1ottt daioil
139 e e &I CNN = (i) 2 jaJl
(11 SRR 23g.0ll fouLd’
140................ Keras Tuner plaaitwl Groc)l odedl alodeo hia-(u) £ jall
L JIg.u.Lr_JI Sl
141 i aloleoll Jasi pplaaiul gagodll A
LA0 oo eagoill nalo
1 23g.0l dojllo
1 .5 RPN 2390l fouud
LA e ettt et aaaaas UnAldlg adall (i)
LA2 oo e, WU 8gano (u)



d pell 8E U dye il dugé Ul dalle ollg I pode i (1

dwpcll el ducuinl dygell dalleollg GJII pleil (1
Machine Learning and NLP For Arabic

i gio NLP Lndall £ alll dadlaedl ol 5l olsSa ol J s Omdena ¢ 58001 s 5k
Al Bn g Il BElsnl 28V Gualidl BRI o 2yl G301 0 o ol 2R el
530t Silang) 3y Sinall s S8 oo g )l GRU1 (Blgrde 5 al) Sy I ol
s Bl ot Al Ayl G s Sl 0 sy 2 Ly i e Do) 003 11
il speech tagging o MSI pludl Ciiad (e Dlaadl ol oo dndall & il dadlaall
Al

o UAJ plLwél wiuniga Lo
o5 plusely Oladsdl (gl dbluny sx Part-of-speech (POS) oS pludl caias o
o) GRS o) LS s o L esliad) 23S

word POS

sla verb

< Preposition
O gl Noun

1Y ) Bag of Words wlelsl i e Lol sl dadlaall el bl ez
S s &y s e (6T Bl G i Y sV ol
POS o3 pludl hinas L5 pldsenly 1 SLISI i 23 905 (oS (0 Loy U
POS (lc wlollell ghrg calduini yAcy
.Named entity recognition (NER) el oLl Jo 5 cdl @
($odedl s J) oLl e ) lemmatizer <l eld Bys 0 I POS s @
.Sentiment analysis jeliodl |5 @
G dagall oda OB 1 (ol Bl o oIS oLl Ciinas e 2odSU1 sl dacny
Alazd! Gleilw e Ly didiies (POS tag) POS dedle e (550 I8 2alSU1 0Y el



oellnnl 84 g éuy pell dé U

5, Sl daall SIS = Gl (el G il (3l Ll eda G
POS tagging o3I pLu3l iiua) Recurrent Neural Networks

ool dalleodlg LI o2

Y UD Arabic-PADT jiuasdl &g iy all SULIL e gores Loddennl LIl S
e 5T Sl s pamn w51 6,3 AU iy S5 POS i) 8 s Fomm o Ly ‘-’)w
g5 STy ST by 4o gars o Jpmand Jo

Sl oy pddely 551 o S oMbl SULIT mod 401 G 1 6 U
degazes SIS (pOS LoD dalS” JS el o S o 0 0SS Ay e ULy LY
Alaz 36000 (o 0555 SLLI O & Laledsend ) 3L SLLI

Sda 08 pemenall KL SULIT Ja ol n Bl Bl Sl st ny Lad A3
Lede oyl ‘,u_j&ﬂ\vw\ zisd

def process csv(csv):

df = pd.read csv(csv)

train text ,train tags = [] ,[]

for i in tgdm(df[‘sentence id’].unique()):
train text.append(df[df[‘sentence id’] ==
train tags.append (df [df[‘sentence id’] ==
return train text,train tags

BWY15 Diacritization Sl D3] a SULI odg dmall dxdlaad) G 5 glasdl oS
B g0 de bl Jax Jo Jgandl e o Saib s> longation

[‘word’].tolist())

i]
il[‘tag’].tolist())

def clean str (text):

#remove tashkeel

p_tashkeel = re.compile(r’ [\u0617-\u061A\u064B-\u0652]")
text = re.sub(p tashkeel,””, text)

#remove longation

p_longation = re.compile(r’ (.)\1+")

subst = r”\1\1"

text = re.sub(p longation, subst, text)
text = text.replace(‘s" ,’ 54")
text = text.replace(‘s' ,’ =)
text = text.replace(‘l ,"11"7)
text = text.replace (‘I ,’1")
text = text.replace (‘! ," ")
text = text.replace (‘I ,’71")
text = text.replace(‘s' ,’s’)

return text.split ()
for i in range(len(train text)):
train text[i] = clean str (‘' ‘.join(train text[i]))


https://github.com/UniversalDependencies/UD_Arabic-PADT

d pell 8E U dye il dugé Ul dalle ollg I pode i (1

oy jiusg Ul
G ne ons SUI 23315 JUms Y Sy a5 ) o 10 LSOl gy ¥ SV 23 505
AV Sl Ghedle 010555 6 pae Jawd o 3T &l oy JUma Y ULy RIS JSU Dy 3

asldsnl (S peoens Jodd J] Gl Juds 0 2 Keras 450 0 tokenizer Al Ladsed
rosdel Y ) 25500 J5aS

word tokenizer = Tokenizer (oov token = oov tok)

word tokenizer.fit on texts(train text)

VOCABULARY SIZE = len(word tokenizer.word index) + 1
X encoded train = word tokenizer.texts to sequences(train text)

tag tokenizer = Tokenizer ()
tag tokenizer.fit on texts(train tags)
Y encoded train = tag tokenizer.texts to sequences(train tags)

Lol g
o JbT 653 Gl ey S5 e Joodl ety b S gl 5 L) ) Y Lo
padding 52> G ,b o Judos IS5 dhar o0 s s Jshll 2BV donll s Jorl

oYL oYl el

Ed 1 plt.style.use("ggplot™)
2 plt.hist([len(s) for s in train_text], bins=5@)
3 plt.show()

7000 -
6000 -

5000 -

3000 -

2000 -

1000 -

o

[ 1] 1 print('Max sentence length:',len(max(train_text, key=len)))

Max sentence length: 68

padding type =5 50 o5 fodedl Jsb Usua> keras . pad sequences &ls Lol
s JS L 30555 padded zeros & siowe) \)Uu;Y\ ol o les "post



oellnnl 84 g éuy pell dé U

Ll s WU Y1 ) 23 500 Beldsend 33ale s el JSC2IL OV oLy o]
-testing )L %15 JI =5 validation dwall e G2l %20 J] Lpanmdsy

X train = pad sequences (X encoded train,
maxlen=MAX SEQUENCE LENGTH, padding=padding type,
truncating=trunc_type)

Y train = pad sequences (Y encoded train,
maxlen=MAX SEQUENCE LENGTH, padding=padding type,
truncating=trunc_ type)

Validation &wall ;e Ga>lly Training copdl ©bly ©legezes J) UL s
.Testing ,Lea-Yl s

X train, X valid , Y train, Y valid = train test split(X train,
Y train, test size = 0.20, random state = 41)

X train, X test, Y train, Y test = train test split(X train,
Y train, test size=0.15, random state=41)

GloJAJl ¢ LouAT

word Sl il C‘Jj 4>l Word embeddings ©ldSl ez ©lles A
IUR VRN | PO N OY 3559 L;L. Floadl cmdl 13 <L ] éJJ\ representation
8 yeS A gazes o Loyl o5 oo Lad el J) ndloY Aravec (o frandd & shas Lodsel
Aol 28 I ALl dlaat) A5 o L 35 o5 (1 8yl (55 g2 sl LsLalST Sy S
eSS VY5 B jne (B3 5l

!wget https://bakrianco.ewrl.vultrobjects.com/aravec/full grams cbo
w 300 twitter.zip
'lunzip full grams cbow 300 twitter.zip

import genism

embedding model =
gensim.models.Word2Vec.load (‘full grams cbow 300 twitter.mdl’)
embeddings = {}

for word,vector in

zip (embedding model.wv.vocab, embedding model.wv.vectors) :
coefs = np.array(vector, dtype=’float32')

embeddings [word] = coefs

embeddings weights = np.zeros ((VOCABULARY SIZE, embedding dim))
for word, i in word tokenizer.word index.items():

embedding vector = embeddings.get (word)

if embedding vector is not None:

embeddings weights[i] = embedding vector

2alol 2L
SIS 3l o okl ey Bt S JYI hatld 3 505 (5l ) liall s 3 el ey
Ananl|


https://bakrianoo.ewr1.vultrobjects.com/aravec/full_grams_cbow_300_twitter.zip
https://bakrianoo.ewr1.vultrobjects.com/aravec/full_grams_cbow_300_twitter.zip

d pell 8E U dye il dugé Ul dalle ollg I pode i (1

8 smadl 8, ,S0dl 34> ol (Recurrent Neural Network (RINN)s ) Sl dvanll &2
Long short-term (stell 5,28 alghll s STl (Gated recurrent unit (GRU)
C’:L«J P Bidirectional LSTM (BILSTM) s>Vl &5t LSTM 5 cmemory (LSTM)

AL L o5l ) 22

o loss function (Uasdl) sl Ws Ledsend 2Ll e dall
C\f—‘}ﬂ S o o dabline Loy ) ol e L o o2 Al categorical_crossentropy
adam Lsas<ul coptimizer u.iof;U 4.l target tensor <Al Sses output tensor
stochastic gradient descent Sl yoall SVl moull Ay oss Loyl e 55ke

el (el 3l ]

Neural Network dasl &2 g3l Keras LS phiseanl ikl maz s Li3] o5
Ldad |3 e lalweasen) S oLl ) 8LsYL . Tokenization 203L.Ssdls models
(DLl o) Gensimy s Lgaellan s UL slaeY Pandas e SULIL #3Le)

model = Sequential ()

model.add (InputLayer ( (MAX SEQUENCE LENGTH)))
model.add (Embedding (input dim = VOCABULARY SIZE,
output dim = embedding dim,

input length = MAX SEQUENCE LENGTH,

weights = [embeddings weights],

trainable = True

))

model.add (Bidirectional (LSTM (256, return sequences=True

model.add
model.add
model.add

Bidirectional
Bidirectional
Bidirectional

( )
LSTM (256, return sequences=True)
LSTM (256, return sequences=True)
LSTM (256, return sequences=True)

))
))
))
))

model.add (TimeDistributed (Dense (NUM CLASSES,
activation=’'softmax’)))

model.compile (loss='categorical crossentropy’,
optimizer="adam’,metrics=[ ‘accuracy’])
model . summary ()



oellnnl 84 g éuy pell dé U

Layer (type) Output Shape Param #
enbedding 1 (Embedding)  (None, 5o, 3e8) 21471300
bidirectional 4 (Bidirection (Hone, 58, 512) 1148736
bidirectional 5 (Bidirection (Hone, 58, 512) 1574912
bidirectional & (Bidirection (Mone, 58, 512} 1574912
bidirectional 7 (Bidirection (Mone, 58, 512} 1574912
time distributed 1 (TimeDist (Mone, 58, 35) 175955

Total params: 27,354,727
Trainable params: 27,354,727
Hon-trainable params: @

Gl e 015 €pochs &5 50 ted 3 pedl oy e e pizld 15alr 23 50l s Y
e Susw keras s ReducLR OnPlateau Jlas! 5 Lodsenl LS. 128 4a batch size
G0V g3l hadl baioss ol 25 6 dy B s ¥ Lo learning rate pladl Jitns
Gl B> el e dazas L)

.Support vector machine (SVM) daslll oolgzeadl &l sloy Lad (25 uny

Dbl C o LuSe nlis (ol 58 ol » Regularization parameter o2l doles
.C=10.0 o

kernel{ ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’},
default='rbf’ Specifies the kernel type to be used in the
algorithm. chosen kernel='rbf’.

315 Thundersvm 455 o5 2250 Sl O b s S5 5015 delw SVM G jxianl 10! &
Thundersvim & 5l &kl odg .SVM 1 CJMT O 5Sms ngjlj SVM J GPU o> ey
Bl Aol e Yy 363 5

! git clone https://github.com/Xtra-Computing/thundersvm.git

! cd thundersvm && mkdir build && cd build && cmake .. && make -j

! python /content/thundersvm/python/setup.py install

from importlib.machinery import SourceFilelLoader

thundersvm = SourceFilelLoader (“thundersvm”,
“/content/thundersvm/python/thundersvm/thundersvm.py”) .load module (
)

from thundersvm import SVC


https://github.com/Xtra-Computing/thundersvm.git

d pell 8E U dye il dugé Ul dalle ollg I pode i (1

clf = SVC(C=10)
clf.fit(x_train, y train)

SVM

SN dasldl (el S 0 dogorms e 53ke 25 (SVM) deslll olgaall &
o xSy regression <Y1y classification Caiward) dsdswnall supervised learning
-outlier detection & kol o2l

sklearn.svm.SVC(*, C=10.0, kernel='rbf’, degree=3, gamma='scale’,
coef0=0.0, shrinking=True, probability=False, tol=0.001,

cache size=200, class weight=None, verbose=False, max iter=- 1,
decision function shape=’ovr’, break ties=False, random state=None)

o RS sl Gl s (Bles s S5 o 81 U Ll BERT Ly 25 J) LoV
255l 85 Juail ey 63 BILSTM gl b3 SUA o3

@390l oLl

S OIS 13] 5T el U2 Do SIS e e 5 Y a3 0l Sl sy oy
training o ol G 3500l o1 36,4 455 e Luslay &1 LS overfitting J613)) L)l
.unseen validation data &5 )| ,.& Gasedl Sl

plt.plot (result.history([ ‘accuracy’])
plt.plot (result.history[‘val accuracy’])
plt.title(‘'model accuracy’)

plt.ylabel (‘accuracy’)

plt.xlabel (‘epoch’)
plt.legend ([ ‘train’,’val’], loc="upper left’)
plt.show ()

model accuracy

1000 - — frain

accuracy

| ' | )
0 10 20 30 a0 50

epoch



oellnnl 84 g éuy pell dé U

85 s 05855 3500 e J) oo gl 0 2L ey

loss, accuracy = model.evaluate (X test, Y test, verbose = 1)
print (“Loss: {0}, \nAccuracy: {1}”.format (loss, accuracy))

SVM; BILSTM J F1 ix5 Clsw Lad o dn

from sklearn.metrics import fl score, precision score,
recall score, confusion matrix

y _predl = model.predict (X test)

y pred = np.argmax(y predl, axis=-1)

y pred = y pred.reshape((y pred.shape[0]*y pred.shape[l],))
Y test = np.argmax (Y test, axis=-1)

Y test = Y test.reshape((Y test.shape[0]*Y test.shape[l],))
print(fl_score(Y_test, y_pred , average="macro”))

&3g-0Ub gl
omell odn 003 Yol Lok oy (805 8o Blomy 522l oyl 23 50l pltiinad §Y1 LiSlay
ot s I izl L5 dictritization LSl D13] e dinall Gdlradl ol gl )

5 sondl and gy (U1 JSaI) iy 0,5 ekl lia s T3y LalS

def classify(sentence) :

sentence = clean str (sentence)

seq = [word tokenizer.texts to sequences (sentence)]

pad _seq = pad sequences (seq, maxlen=MAX SEQUENCE LENGTH,
padding=padding type, truncating=trunc_ type)

pad seq = np.squeeze (pad seq,axis=-1)

pred = np.squeeze (model.predict (pad seq).argmax(-1))

output = [tag tokenizer.index word[tag] for tag in pred if tag !=
0]

return output

sentence = Vg, Lill doles 8 GL0Y1 anndl axs gen”
output = classify(sentence)

word tag = [(sentence.split() [i],output[i]) for i in
range (len (sentence.split()))]

print (word tag)

HGHESEIN|

(‘0s>", ‘proper noun’), (‘cxs’, ‘verb’), (‘condl’, ‘noun’),
‘6,5Y17, ‘noun’), (‘_»', ‘preposition’), (‘iulgs’, ‘noun’),

[
(
(Yeyladt’, ‘noun’)]



dw ol acl duc il ug el dalleollg QI deil (1

Dataset Name
Data Collation Team
Data Collation Team
Data Collation Team
Data Collation Team

Data Collation Team

Data Collation Team

Data Collation Team

Data Collation Team

Data Collation Team

Data Collation Team

Classifier Name
RNN
LSTM
GRU

BILSTM

SVM1 - C = 1.0 embeddings
=100
SWM2-C=100
embeddings = 100
SWM3-C=100.0
embeddings = 100

SVM1 - C = 1.0 embeddings
=300

SVM2-C =100
embeddings = 300

SWM3-C=100.0
embeddings = 300

Accuracy
97.15
96.94
97.04
97.25
94.03

94.36
94.22

93.61

93.90

93.54

Dataset Name
UD_Arabic-PADT
UD_Arabic-PADT
UD_Arabic-PADT
UD_Arabic-PADT
UD_Arabic-PADT

Data Collation Team

Data Collation Team

Data Collation Team

Data Collation Team

Classifier Name
RNN
LSTM
GRU
BiLSTM

BILSTM (Modified)

BILSTM 1 -Embedding
own-Maximum length - 39

BILSTM 2 -Embedding
own-Maximurm length -
500

BILSTM 3 - Embedding
Pretrained - Maximum
length - 39

BILSTM 4 - Embedding
Pretrained - Maximum
length - 500

Accuracy
95.7
96.7

97
97.2
99.3

97.25

99.75

96.92

99.738




oellnnl 84 g éuy pell dé U

e £ . Ly oo o
awla Ul aolll
Dataset Name Classifier Name Accuracy F1 Score
Final Data Collation BILETM 4 - Embedding 93 9017
- Pretained - Maximum length
zam -
Dataset Name Classifier Name Accuracy F1 Score
Final Datz Caollation Team SV 9376 7664

BILSTM J F1 &35 Bl <ilS BILSTM 2 &5 Jual Gi 3500 il lassl
SULI Slegorme sle] el paill by Bl oda 3.9690.195 97.94%
Embedding & sieel el ctokenization cpioilSsdl JM- e G Lgzrdlnes
& b Lad Ll ~3Lal . Pad sequences progress séodl wdladas puiss (Matrix
B Dyl 5 23900 IS wy o35 13315 .SVM BILSTM LSTMy GRU; RNN

B Juasly a1 5 pedl ey ddkseodl 50l

:Janoll

https://medium.com/omdena/machine-learning-and-nlp-for-arabic-part-of-
speech-tagging-d8388clc2e84



https://medium.com/omdena/machine-learning-and-nlp-for-arabic-part-of-speech-tagging-d8388c1c2e84
https://medium.com/omdena/machine-learning-and-nlp-for-arabic-part-of-speech-tagging-d8388c1c2e84

Ladglag cslanill séw pell 6 éueuinl duge Ul dalleoll (2

Gbanll dwpell @il ducunl dygell dalleoll (2
Arabic NLP: Challenges and Their Solutions LaJglag

Godlaedl sl Bl Sl o Jardl bk (y0 2355832 5o ol 5 15 o] D)l elda b
Y ok sy e oS S8 dezel L Lple Cdiell) i bdl ol 55Vl L NP adall &yl
Y e sl aday B gl 8000 Al CAMeL e Glapshs o5 ) foonll
BB BT~ SU L CYENVE PURY- S8k
Lol Jsbze gl sal Jam s Jlomdl Min 81, Joms agold) 04 5 S 4o
abaal
) 3 o s (NLP) Lonrlal) & sall) dondlnadl s Lin oo ol il e Jonal Joog
3V
25l 10 llaas) Lgild Gy LISl Zangss 0>V IS0 il O Sy -1
(Orthographic Ambiguity Y
LU ez daksall JEAV e (G) OYT o 4 il (g 50w Of Sy .2
(Morphological Richness _ I < 2l
Olegll M) g 3,08 @Ml Sl 4o w)l 4l 5,55 dialects =g Sba .3
(Dialectal Variation
G,b Bl 0585 O o SKaadl yad (W55 L 38 4385 o) &5 gop a3 s Aol Gl 0T Lo 4
e it slone e e Y 3 ) ol B s SIS o R Bl
-(Orthographic Inconsistency Sl GLiYl pue)

Aalzeal) Bl JISEYI oy DB e By Al Bl Y1 jailiasedl ada palos
300 Y g of oSes «Slaglll o oSU1 saly cllazoead] Lidlisedd] Emgdly (o ldSW
o ;w@w sl .Sl e JI Jnas AN NLP Gadall & 2l dodlaadl Sols oy
IS 6 bl oy &30 (1) IS5 5400 J] Jozs Lo e G pal) G3UL a5l ol 6 s O

REW E I BET TR PR PR AN EII g

JolaJl
s Dy guazes Bylns 55805 351 gall dudises Sl el e JEL 0055 Lais liss ¥ oS
e laced o3I s (5 7o CAMEL** sL23] 12y Sl .Skl sl o 6L 51 S

pip install camel-tools


https://medium.com/u/ec2cfcfbd11a?source=post_page-----d99e8a87893d--------------------------------

oellnnl 84 g éuy pell dé U

oo Jellls o ol el al) Bl Bl Lpdsul ) Sl skl ol Ll
.camel-tools &> pladaly &y )l A L a5 1 5y, bl
:»,JLMAJaﬁuub@uv\wawwwwwwgw.\s_sxsiu,s;.ﬁ;ahgup
i) Slde 5 Ll g0 Il i3 gl lelS s 5, Sadl G Y1 A1) Jre nndall &yl
[ oo 5 e 2l Sloslaodl il s 2l (6,331 UL Cilas plee oo Ty 6,315
S Aol 2036 e ol 4] Ll Github repo (s s bl &l dodlaall ¢ 500
Gl STl MY 5 goidl s 21 iyl i 52l

anls i g AalS s Ul B 2 oY Caldl JI 'L 2S5l e JSTG oLl dAN Lo

Jas

ie gazeall ol (S5 A yall LG (a8 2l SLISTL e 228 e Ll (g 5w NLTK of >V
ALl LY laslall o e dodall i

https://github.com/mohataher/arabic-stop-words?source=post page-—---
———————————————————————————————— d99e8a87893d

ﬁ+ébjpsaﬁ‘gﬁw>

JHAGU Ll 21 dgiaAll
diacritics LSl oledle B3| o,k e UL G rasedl ol Shny Ll o S35k
SVl Gam Bl (S AN symbols 5 s Diacritics JSall oledle . jall g
Sl =l el G T i T el 85 g2 gl (& 5ulae ¥ &1 Bvowels Al b >l

" ool 55 guall 301

s 5 }’
\)\A_A\ < A ]

3] LA b JElls il o Blasl ikl 1S5 Ol o Lk 2elSU1 (g 520 13
.data sparsity <ULJI 53 |Ia) 500 M) oda

# import the dediacritization tool
from camel tools.utils.dediac import dediac_ar

# apply to your text column


https://github.com/mohataher/arabic-stop-words?source=post_page-----d99e8a87893d--------------------------------
https://github.com/mohataher/arabic-stop-words?source=post_page-----d99e8a87893d--------------------------------

Ladglag cslanill séw pell 6 éueuinl duge Ul dalleoll (2

df.tweet text = df.tweet text.apply(dediac ar)
word-root &Sl jdar i OY s s Gl J| B10 Gl (605 Al AUl oy

oo ol ST LSS 1 STl oldle e Blazel Blas dilies il & 0085 O Sa
RV ENI g U

ol yagolll yoaall:2 bgrill

dialects =gl o d5L2JI spelling inconsistencies L5 ¥l wlaslell - sae slel 1o
Jo I 5l 0 (ol St & pSally B gl g pal) I e 8 el )
o s camel-tools p 45 (Asdocll a5 Je . orthographic ambiguity SSWY1 5 53!
hamza & 5eg)ls teh-marbuta db s ol el o Blal) &ms Gy o dms g0, )] G,k
(alef I e

from camel tools.utils.normalize import normalize alef maksura ar
from camel tools.utils.normalize import normalize alef ar
from camel tools.utils.normalize import normalize teh marbuta ar

def ortho normalize (text):

text = normalize alef maksura ar (text)
text = normalize alef ar (text)
text = normalize teh marbuta ar (text)

return text

df.tweet text = df.tweet text.apply(ortho normalize)
oAU iy jo :3 dgnAll
S ixlow > simple word tokenizer SLdSU dacs Loy 3151 3 ,2ee & LI 5 o]l
AN LS has Jlss Badl JBs] e ez oo 23
from camel tools.tokenizers.word import simple word tokenize

df.tweet text = df.tweet text.apply(simple word tokenize)
&yl auAgi 4 dgihall

o1 135ksdl &l Gods (i ST o plazad 52 5 9V b e (U1 OIS 52 1a Y
o oS s ydandl O 1 01 L) o e ) 3101 go s Sl oldle )
oo o 2SI 0 (55 0 Sy Aol LS yn (61 85 pnad Ay b o 5 Y (Lol AL
and with our contract * "Lola3 5™ /buiass" 1 oy [k obsT £alSTI 5 O o es (Jladl
obde e Blael — ’and he stresses us out’ "bsads 24" 51’/ necklace / psychoses
L & oSl gl Ll Lot LSC2c)]

0533 O s 2SI JISET e JS05 (T 5



oellnnl 84 g éuy pell dé U

— 4l5 351 "morphological analyzer' ‘Gl Jloll” me camel-tools 4s3> db
(G133 5o\ Ly 340l e B3 1o ULy saeliy L Lpods S (6T o)l — sl
eI pLudls demma Lol G5 Flay AedSIl dlazoned] laally JIKEN SIS Sl 7 5w

5 Il by b ge COSTI3] & 5ol Y e 21 cpart of speech

M 5" 2SI T s Tows 6 2 b Lo

from camel tools.morphology.database import MorphologyDB
from camel tools.morphology.analyzer import Analyzer

db = MorphologyDB.builtin db()
analyzer = Analyzer (db)

analyses = analyzer.analyze (' LSuwizyg'")

for analysis in analyses:
print (analysis, '\n')

Sl 20 (o 23Ty o o 3 el (6 g e 0k 80l W1 om0 ey o3 A
e Bslesl M- 1 £dSJ1 e "disambiguates o seidl oy Lol &l LY s o =2
.diacritics Sl

{'diac': 'Ls5iakos', 'lex': 'l siE:', 'bw':

' 3/PART+o/PREP+. it /NOUN+/CASE_DEF NOM+L3/POSS_PRON 1P', 'gloss':
'[part.] + by;with+complexes+our', 'pos': 'noun', 'prc3': '0',
'prc2': 'wa part', 'prcl': 'bi prep', 'prcO': '0', 'per': 'na',
'asp': 'nma', 'vox': 'ma', 'mod': 'na', 'stt': 'c', 'cas': 'n',
'encO': 'lp poss', 'rat': 'i', 'source': 'lex', 'form gen': 'm',
'form num': 's', 'pattern': 'L4123;3', 'root': 's.G.¢', 'catibé':
"PRT+PRT+NOM+NOM', 'ud': 'PART+ADP+NOUN+PRON', 'dlseg': 'Lsilix,s',
'dltok': 'Lsidzy +3', 'atbseg': 'L+ iie 4o +53', 'd3seg':

'L+ dae +o +3', 'd2seg': 'lLodae +o +3', 'd2tok': 'lLoiae +o +3',
'atbtok': 'Ls+ ise +o +3', 'd3tok': 'L+ ih: +o +3', 'bwtok':

"L+ +faee +o +3', 'pos_lex logprob': -4.923429, 'caphi':

'w abi3uqgadunaa', 'pos logprob': -0.4344233, 'gen': 'f',
'lex logprob': -4.923429, 'num': 'p', 'stem': '.it', 'stemgloss':
'complexes', 'stemcat': 'N'}

{'diac': 'Liuikos', 'lex': 'l 5iE:', 'bw':
'3/PART+9/PREP+¢ji/NOUN+LJ/POSSiPRONilP', 'gloss':

'[part.] + by;with+complexes+our', 'pos': 'noun', 'prc3': '0',
'prc2': 'wa part', 'prcl': 'bi prep', 'prcO': '0', 'per': 'na',
'asp': 'na', 'vox': 'na', 'mod': 'na', 'stt': 'c', 'cas': 'u',
'encO': 'lp poss', 'rat': 'i', 'source': 'lex', 'form gen': 'm',
'form num': 's', 'pattern': '1L12303", 'root': '>.G.¢", 'catib6':
'PRT+PRT+NOM+NOM', 'ud': 'PART+ADP+NOUN+PRON', 'dlseg': 'LSaizos',
'dltok': 'lLs.ix, +3', 'atbseg': 'L+ .ie +o +3', 'd3seg':

Lo+ ahe +o +3', 'd2seg': 'Loahe +o +3', 'd2tok': 'Loahe +o +3',
'atbtok': 'lLo+ awe +o +3', 'd3tok': 'Lo+ aik +o +3', 'bwtok':

"L+ aie +o +3', 'pos lex logprob': -4.923429, 'caphi':

'w abi3uqgadnaa', 'pos logprob': -0.4344233, 'gen': 'f',



Ladglag cslanill séw pell 6 éueuinl duge Ul dalleoll (2

'lex logprob': -4.923429, 'num': 'p', 'stem': 'u.i:', 'stemgloss':
'complexes', 'stemcat': 'N'}

{'diac': 'Lasiuy', 'lex': 'l si%:', 'bw':

' 3/PART+o/PREP+ .3t /NOUN+/CASE _DEF GEN+L3/POSS PRON 1P', 'gloss':
'[part.] + by;with+complexes+our', 'pos': 'noun', 'prc3': '0',
'prc2': 'wa part', 'prcl': 'bi prep', 'prcO': '0', 'per': 'na',
'asp': 'na', 'vox': 'nma', 'mod': 'na', 'stt': 'c', 'cas': 'g',
'encO': 'lp poss', 'rat': 'i', 'source': 'lex', 'form gen': 'm',
'form num': 's', 'pattern': VLHl2Eon 0, Ve 8 '>.G5.¢", 'catib6':
'PRT+PRT+NOM+NOM', 'ud': 'PART+ADP+NOUN+PRON', 'dlseg': 'Liuizx,s',
'dltok': 'lLi.ix, +3', 'atbseg': 'L+ .ie +o +3', 'd3seg':

'Lt ade +o +3', 'd2seg': 'ULiase +o +3', 'd2tok': 'Louie +o +3',
'atbtok': 'lLot+ .k +o +3', 'd3tok': 'Lot+ aie +o +3', 'bwtok':

'L+ 4+ aGe +to +3', 'pos lex logprob': -4.923429, 'caphi':
'wabdi3uqgadinaa', 'pos logprob': -0.4344233, 'gen': 'f',
'lex logprob': -4.923429, 'num': 'p', 'stem': 'u.i:', 'stemgloss':
'complexes', 'stemcat': 'N'}

A Tke 0585 () B B8 Jkons ¢l 0 W 34y 35 (Dl 6 n 28T o Jasl o 0 300V
14 5,1 L a51) Morphological Disambiguator sls plasl Loy (Sl Oﬁ’m ALY
M-S tokens 3l e 456 Wia sl L Bl ey pLaU (twatch out, Arnold
Jolos IS 58 el 1 JSCEV) a5 (38 kel (el tokeenizer 2alS” I 5)
Wl lie plidenl a3 1 U Selly @3ldl Jl d ol BiSens 5B o 85ke
ALl Lol 06 10 Yozt 51 1 Yz 21 a3l s 1w o2y - dictionary keeys

PR = ER P By NE N NES B

from camel tools.disambig.mle import MLEDisambiguator

# instantiate the Maximum Likelihood Disambiguator
mle = MLEDisambiguator.pretrained ()

# The disambiguator expects pre-tokenized text
sentence = simple word tokenize ('oloulLaiiy!l 5§ guoly axs')

disambig = mle.disambiguate (sentence)

diacritized = [d.analyses[0].analysis['diac'] for d in disambig]
pos tags = [d.analyses[0].analysis['pos'] for d in disambig]
lemmas = [d.analyses[0].analysis['lex'] for d in disambig]

# Print the combined feature values extracted above
for triplet in zip(diacritized, pos tags, lemmas):
print (triplet)

Jsd lemma L Uiy « Part-Of-Speech tag e ISJ1 pludl &ads LA T2l CJ}U} s
sl S



oellnnl 84 g éuy pell dé U

("e&xs', 'verb', 'axzs-a 1'")
('Q¢4L4', 'noun_prop', '0_guLo")
("S', 'prep', 'l__3') B
('uL)L?;»_H\', 'noun’', 'l_gLﬁ_}_':l')

A Al Lol Sl e o Jsasdl (Jbal o o LSl 6T n M
103l 83 g podl UG e D> plaseraly
def get lemmas (tokenized text):
disambig = mle.disambiguate (tokenized text)

lemmas = [d.analyses[0].analysis['lex'] for d in disambig]
return lemmas

Lo s Al az bl » oda (Topic Modelling § 52 soll &2l (6 e 1 (#5 ried didls
Qs bl 62U apliall e 6 oLl tokenization ;23U S el o =Y
ISy Jodldl e 2 o s (6 Ul5 «<Morphological Tokenizer b all Jlowall pliseily

o3l gl alasddl Je Blonel Cilia

from camel tools.tokenizers.morphological import
MorphologicalTokenizer

# atbseg scheme

tokenizer = MorphologicalTokenizer (mle, scheme='atbseg')
tokens = tokenizer.tokenize (df.tweet text.iloc[0])

print (tokens)

# atbtok scheme

tokenizer = MorphologicalTokenizer (mle, scheme='atbtok')
tokens = tokenizer.tokenize (df.tweet text.iloc[0])

print (tokens)

# bwtok scheme

tokenizer = MorphologicalTokenizer (mle, scheme='bwtok')
tokens = tokenizer.tokenize (df.tweet text.iloc[0])
print (tokens)

# ...and so on...

e g pie ks I tokenization [ lemmatization gg o 5 gl g e Lol
1l ol oyl o) Bal dacdlnall e ngmil A8 0555 U3 sy oty ¢ Jdl |

Camel dcio 0 2yjoll

JEN ) Al dlaad) olpedl e wsedl camel-tools 4oy b

e 0S5 I3 2l (&3 I Ly cunicode normalization 555 o & sl s transliteration
* (o ghandl o el el 35 cyn oS .Sl s 0]

Godlaodd 15T bl e all @ gloes Jondl pa Il iy a3 ST J] o3l 0 Gl )]
o3de sz e b Jo g (NLP da il & all) dlaadl ol e popdl ail) dieed|


https://camel-tools.readthedocs.io/en/latest/?source=post_page-----d99e8a87893d--------------------------------

Ladglag cslanill séw pell 6 éueuinl duge Ul dalleoll (2

<l A (Stanford CoreNLPs MADAMIRA s Farasa ) L;J.&-;Y\ sl ol ) Ladl
D) Dallndl s 3l ) phsen¥) G2 sy Ygodis G55 25Y1 s camel-tools
31 LY el G o Ll 5L 6B codlel ) STl Dbl o Jolanld WY
aSan — Ol @JT oo 8415 G oy _sentiment analysis eLie]! Jlos ol ] aSleg
ASTL pasealer (sl A g 25 Jool o) &8 2l gy o Al dialect gl Lo
0PIl Ladall & salll dodlacdl Hlins (38308 AUl BL5Y Dialect Identifier dagll o 20

:Janoll

https://towardsdatascience.com/arabic-nlp-unique-challenges-and-their-
solutions-d99e8a87893d



https://towardsdatascience.com/arabic-nlp-unique-challenges-and-their-solutions-d99e8a87893d
https://towardsdatascience.com/arabic-nlp-unique-challenges-and-their-solutions-d99e8a87893d

NLP (.6 glolell JII ol il pwaisod 62180 Gy ye wlbly clegoao (3

U el Gwaiso) 62160 dyye by wlegono (3
Useful Arabic ducuinl dygelll dalleoll 8 gulolel

Datasets for Machine Learning Engineers working in
NLP

3l uail bl wlegoao

MASADER (1

ie yazes 500 o ST OLESLY (data catalogue bl THLES) s &ely » Masader
GplWl plasidl faanas (ARABIC NLP gl &0 ddall &5l idlal) L
IS5 2yl Bl Eondall 2 1 el By ol s

Arabic R eviews Dataset (2

0555 Ol (Sesd csentiment analysis model ,slaall o T35 wwl ) ples wes13)
G5 99,999 o> e odn SULII e goren (5505 il sas odn SULII o gores
Mixed dhalseodl darl ol iold 3 (balanced &5l 50) Sloetally oY1 oSl Galal
.(5/5 51 4) Positive Ll (5/2 S Negative il.dls «(5/3) Review

HARD-Arabic-Dataset (3

Booking.com g gy Lo )l &AL Galald L5 93700 (e HARD by ds gazes 5555
Epdod| el Ayl GG drareod] Sl BES 03 12016 s p/sip s,ed SO
neutral sJslowss positive dulow] Sl Wl e lgasas 55 Aol gl J) BLSYL
.Negative dwkw

ASTD (4
oNT10 o JST o (Arabic Sentiment Tweets Dataset) ASTD <ULy de gazee (53
s gl ] s B all oLl o 5y 5

-Objective s 550 ®

.Subjective positive i3l> iolw|

.Subjective negative isl3 ilw @

.Subjective mixed i3l3 dalizes  ®


https://arbml.github.io/masader/?source=post_page-----d06ba6c5e96d--------------------------------
https://arbml.github.io/masader/?source=post_page-----d06ba6c5e96d--------------------------------
https://www.kaggle.com/datasets/abedkhooli/arabic-100k-reviews/discussion/134310?source=post_page-----d06ba6c5e96d--------------------------------
https://github.com/elnagara/HARD-Arabic-Dataset?source=post_page-----d06ba6c5e96d--------------------------------
https://github.com/mahmoudnabil/ASTD?source=post_page-----d06ba6c5e96d--------------------------------

oelnn Ul A4 Jlg d pell é Ul

ArSAS (5
is gazes oo §,Le (Arabic Speech-Act and Sentiment Corpus of Tweets) ArSAS
speech-act recognition p’&.ﬂ JLasl o Sl plead dog plall & el ol Rl e
Joetle 9&53 Sl JI S3F ksl Jbesl < p&i\ JLsl .sentiment analysis jelaodl o
gl g 3l 0 e 3 bl 3Ll el ghaadl a5 ool bl LV el
falides Wl dnd Lgidaiy Lasldely ade Sl b0 Jaks Iy a0 Il 21 e &SI
Sl BLo| Lal 03 (lls J BLoYL . JI5dl; Jts‘u\; ,M.n oo @SS bl Sloonns o

Ll o kb )l ol ) e B8 pamall k] o 5

Arabic Sentiment T'witter Corpus (6

e B3l o] ez By pal) 5Lt o B pares o2 0k UL 2 gares o o5
g ) oLl o) Grand) (el

47) dy ) Bl s 5 T 58 e (5500 12019 Ll dome ) eda SUL) s e
e yon B3lpe od orbors Bl Sy By e a3 Ol T 11 s
okodly ol Y1 & ) 0 1 eene pliSialy Lgnor o35 UL

Jamalon Arabic Books Dataset (7

a5l Vs Lo pall p2alll SLS 8000 (e ST e 5505 &5 780) £28ad ULy s g

ULl G gamen (oo do Al Gl Amdoll L)l dadlaadl ~3LS o yd [BESIW
o DUl s gars (g g i A ol & 5al) o3 i e

SR CRUIN]

Title olgadl @

.Author 3.1
.Description —aw il o

Pages wliall o
.Publication year ;i i @
.Publisher ,&UJl o
.Coverslexll o

.Category &4l e
-Subcategory 4l izl e
.Price j~.Jl o


http://homepages.inf.ed.ac.uk/wmagdy/resources.htm?source=post_page-----d06ba6c5e96d--------------------------------
https://www.kaggle.com/datasets/mksaad/arabic-sentiment-twitter-corpus?select=train_Arabic_tweets_positive_20190413.tsv&source=post_page-----d06ba6c5e96d--------------------------------
https://www.kaggle.com/datasets/dareenalharthi/jamalon-arabic-books-dataset?source=post_page-----d06ba6c5e96d--------------------------------

NLP (.6 glolell JII ol il pwaisod 62180 Gy ye wlbly clegoao (3

1)1 500l (s o 55 oo Arabizi ULy de sazes O 55C5

Sl i 5Ly s J) s dlaleseadl ol s £das Yl o el e 8 sazes (]
iiadd oy o dlalbeall o pally BileYl o sl (50 s e Sk
other sl «Arabizi (“a”)s English (“e”) L&l e Gsdo jLes-Vls uyddl bl
.(“0”)
S de gazeny oo )l Gl ) Gsdy doz e Arabizi oy 3,452 (o 550 &8 gazes (<
gl Bl ) Call G dax e 2adS71,385 e s 50 Arabizi sy,55 127 (e
Sl o &5 gl Baz 20 o g U Lesly CopS ) eds SULN e sames g
il

Arabic Poetry Dataset (6th — 21st century) (9

sl pa @)yl a B 5SS ey sl 2! oY1 T 5 s e 3l ga o all ]
Gl atl e di) L pall W G Sl dwbdly Eeloa VI ol Cioyd ol

petlsedl Gl Sl ol g 8 oS N gy ol i

S Lo g oo ealldl 0,801 e a3 Bknas (ST 58 (e ST e SULL e gazes (s 500
o Lgsh g adeadlly Lo ladl vl oo 5aail) o I UL ol sl Ll o5 ol JS Sl
-adab.com s SULII #| 3l

Arabic Learner Corpus (ALC) (10

G | G At 38 gares 0o iy pall B Endall sl Dadlaal) (5 ULy s pares
Qo geabay L5 padl iy Al 88dedl B3I 900 (pe ST Arabic Learner Corpus (ALC)
UL e gazes

Arabic BERT Dataset (11
LS o5 oS 1000 oo 2S5 Lo pall LanSos oo dlimes Slike a e sazeall odn S5
BERT J Nvidia PyTorch G conled Leans s

OntoNotes (12

s e 53 Sl BRG] e B8 saee 8 Bl odn UL 8 paes
gl Ssloadls eMandl Zodks 5 ) SLENT e s3liaedl e o st degazes o il
ROV



http://catalog.elra.info/en-us/repository/browse/ELRA-W0126/?source=post_page-----d06ba6c5e96d--------------------------------
https://www.kaggle.com/datasets/fahd09/arabic-poetry-dataset-478-2017?source=post_page-----d06ba6c5e96d--------------------------------
https://www.arabiclearnercorpus.com/about-the-corpus-en?source=post_page-----d06ba6c5e96d--------------------------------
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#requirements)
https://catalog.ldc.upenn.edu/LDC2013T19?source=post_page-----d06ba6c5e96d--------------------------------

oelnn Ul A4 Jlg d pell é Ul

Arabic Question Answering Datasets (13
ARCDj Arab SquUAD  Js 8suxs Sbly legazs Jo JUI Github g3 5e 550w
e S5t L aletna¥l e aSTE 2kl SULI Sle gorme plisid Lo La d

ayycllegllle radle il adlhag dygisell bl alcgono
Arabic Handwritten Digits (1

10,0005 &5 35500 60,000 e (5 5055 318 700 5 ¢y ol Loy & 55n &6 yaen oia
(5 JS S JS oS &> (Arabic NLP &y pall &) Laplll &5l dndlasll) &5l 5 500
e Lhe

Arabic Handwritten Characters Dataset (2

o2obesl 5125 Cases 60 3 o ddl sy £ 2850 G 1 16800 e oin UL & sazen (6 520
sl T 158 SLST e Jats 710 .4yl &l Eamdall 4 5all) Dadlaadl GGLe 40 J) 19
Ao gl Gk 300 B L)

Yarmouk Arabic OCR (3
MeerSs e ol AL & 5o Dl 4587 0 85300 8994 0k iy )l UL i sares oaiS

:Janoll

https://medium.com/@amnahhmohammed/useful-arabic-datasets-for-
machine-learning-engineers-working-in-nlp-d06ba6c5e96d



https://github.com/WissamAntoun/Arabic_QA_Datasets?source=post_page-----d06ba6c5e96d--------------------------------
https://github.com/WissamAntoun/Arabic_QA_Datasets?source=post_page-----d06ba6c5e96d--------------------------------
https://www.kaggle.com/mloey1/ahdd1
https://www.kaggle.com/mloey1/ahcd1
https://www.researchgate.net/publication/328245791_Yarmouk_Arabic_OCR_Dataset
https://medium.com/@amnahhmohammed/useful-arabic-datasets-for-machine-learning-engineers-working-in-nlp-d06ba6c5e96d
https://medium.com/@amnahhmohammed/useful-arabic-datasets-for-machine-learning-engineers-working-in-nlp-d06ba6c5e96d

I ol polaAiwl du pel pelitodl Julni (4

Arabic E,J]JI rolc Ul olaaiwl dw ol jeliedl Judai (4
Sentiment Analysis using Machine Learning

ALl o el Cal G madl) ol e ei dlpe omall e[V Ciinas dodows dny
oy )l AR A o)) & Al Blnadl a3l (I plgall ST aT (sentiment analysis
Jelows Gy Lo oS plazal oo Y (@Il s Lasl Wl ST e 5015 Lo S m o 1 e
Arabic Sentiment 4,2l jeliadl oo odad davases dlidl oda L A, . el
0s2b plsewls Analysis (ASA)

wbluwldcgono
Eub) ol e dinas 505,50 1800 e Dlidl sda Gladicunall SUL degazes OS5
Lo Lo ) gl (s s .negative dw s positive

Ul GLLA Lwlg iAol al juiwl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import string

import re

from nltk.corpus import stopwords

from sklearn.model selection import train test split, GridSearchCVv
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.pipeline import make pipeline

from sklearn.linear model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.naive bayes import MultinomialNB

from sklearn.svm import SVC

from sklearn.metrics import confusion matrix,accuracy score,
classification report

data = pd.read excel (r"C:\Users\ibrom\Desktop \NOTEBOOK\NLP
PRACICE\AJGT.x1sx")

print (data.head())

print (data.sample (5))

ID Feed Sentiment
LU s 2ley | ples o Sl ieda i) Positive
1 2 aleon W g it ot Ban a0 lal o Negative
2 3 daln; 4B Positive
i o4 wial sl Negafive
4 5 pralyeptecitio gliesgie g el Negative


https://github.com/komari6/Arabic-twitter-corpus-AJGT

oelbnll cl8allg dy ol dcll

ID Feed Sentiment
833 834 TR LRCF IS g P S Positive
813 814 Ao ndsalt 2K Positive
935 936 e e FPositive
38 39 wxile o S o O e ol Positive
1336 1337 s e aldial e Jat 2l Positive
ID Feed Sentiment
833 834 o b e el glls e Positive
813 814 Jrass o ndgaedalt 2 8 Fositive
935 936 B Positive
38 39 =il o A ol e e Positive
1336 1337 Ao B aldial e dal Al Positive
ID Feed Sentiment
833 834 e 0l ol gla 1 e Positive
813 814 Jpumyoiodgsaadt 2 A Positive
935 936 Al ol il rlua Positive
38 39 sl o A o e Positive
1336 1337 s Bpsldieal e dat 2l Positive

Positive 968
Negative 968

Mame: Sentiment, dtype: ints4

L LU balanced classes 431 g old Lol

Al ool aalleoll
Loz 5 GV plasdl G pao S5 sl o el o Jasdl e Blins Ui (gLe
d il B ] ol oyl 5 JSy Bl D] ] S e
s gl Bl oyl el 58 e (5 5 Gthub g3 e GY oy Lo
Arabic &y, JSadl obdles punctuation o 2l ledle 415 %SMLMT ISy ol shasdl
a5 (s~ harakahs oIS ,>Jls short vowels  maill &la)l g ,>) diacritics
((NLTK corpus) NLTK & gezes (355 52all) stopwords <ib sl wlelS's elongation


https://github.com/motazsaad/process-arabic-text/blob/master/clean_arabic_text.py

I ol polaAiwl du pel pelitodl Julni (4

The first step is to subject the data to preprocessing.

This involves removing both arabic and english punctuation
Normalizing different letter variants with one common letter

LI B

# first we define a list of arabic and english punctiations that we
want to get rid of in our text

punctuations = "'\+Xf<>_()*&A%][_—“m"!|+l~{}’,.§":/‘_"' +
string.punctuation

# Arabic stop words with nltk
stop words = stopwords.words ()

arabic diacritics = re.compile ("""
£ Shadda

Fatha
Tanwin Fath
Damma
Tanwin Damm
Kasra
Tanwin Kasr
Sukun

_# Tatwil/Kashida
""", re.VERBOSE)

= K S S S S

def preprocess (text):

v

text is an arabic string input

the preprocessed text is returned
Tr

#remove punctuations
translator = str.maketrans('', '', punctuations)
text = text.translate(translator)

# remove Tashkeel
text = re.sub(arabic diacritics, '', text)

#remove longation

text = re.sub("I" ,"[ITi1]", text)

text = re.sub("g" ,"s", text)

text = re.sub("" ,"3", text)

text = re.sub("" ,"&", text)

text = re.sub("o," ,"s", text)

text = re.sub("4" ,"3S", text)

text = ' '.join(word for word in text.split() if word not in

stop words)
return text

data['Feed'] = data['Feed'].apply(preprocess)



wellnnl 184 lg éuy pell dé Ul

print (data.head (5))

Feed Sentiment

0 lemsl ey los Lty e S inda v 1
1 sl o 0l e S0 0
2 o fluy el e 1
3 aslat s 1.3 0

4 H.:hij'l_"._hl’.;::iﬁéi;“\_‘!-j}.();ﬂj!_)ﬁ'_‘_“___ 0

information s gall oMocl CLE plisenl L4855 g2 il oda (e gl
SLdSIN L s Jasd c.,éjl..q oo J"u“‘ o5 .SA eladl s ddaksed) extraction
I VST SULI s o2 (SB1EN Erd s daled dogo (5T pon Sl 5 LS ln (ef-idf 1)
ol Ole gazes J| UL (oS 0% &3 ax .(Sentiment) caiwasy (Feed) ol
Logistic sz 5! Sl e Bl dakides oliias A (s ctest Ly train

.Regression

Glag Ul jlansul

Loyl 5 Bty 0555 O (Ko g ) Al Lgi] 0 5L i o)l g5 58 oo sl
Pipeline 38 plisenl o2 23l 5 S Jaz ol e classification caiaasl eleo] sl
&l transformation | <l s vectorization 4 sl e oS Al Scilkit-Learn &
n o I 3B G St ol 8 1l 8013 LSy . Citanlls gridsearch Sl

# splitting the data into target and feature
feature = data.Feed

target = data.Sentiment

# splitting into train and tests

X train, X test, Y train, Y test = train test split(feature,
target, test size =.2, random state=100)

# make pipeline
pipe = make pipeline (TfidfVectorizer(),
LogisticRegression())
# make param grid
param grid = {'logisticregression C': [0.01, 0.1, 1, 10, 100]}

# create and fit the model
model = GridSearchCV(pipe, param grid, cv=5)
model.fit (X train,Y train)

# make prediction and print accuracy

prediction = model.predict (X test)

print (f"Accuracy score is {accuracy score(Y test,
prediction) :.2f}")


https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

I ol polaAiwl du pel pelitodl Julni (4

print (classification report (Y test, prediction))
Accuracy score is @.84

precision recall fl-score  support

=] .85 8.81 8.83 176

1 8.83 8.86 @.84 184

accuracy .84 368
macro avg .84 .84 @.84 368
weighted avg .84 .84 .84 368

184 85 G o5

8Wlguitel ULl @i
pipe = make pipeline (TfidfVectorizer(),
RandomForestClassifier())

param grid = {'randomforestclassifier n estimators':[10, 100,
10007,

'randomforestclassifier max features':['sqgrt',
'log2']}

rf model = GridSearchCV (pipe, param grid, cv=5)
rf model.fit (X train,Y train)

prediction = rf model.predict (X test)
print (f"Accuracy score is {accuracy score(Y test,
prediction) :.2f}")

Accuracy score 1s @.85

precision recall fl-score  support

<] a.82 a.89 a.85 176

1 @.38 .81 @.84 184

accuracy @.85 360
macro avg a.85 @.85 a.85 360
weighted avg @.85 8.85 @.85 368

[aga:UIaaniollqafveISayesLdiznb

pipe = make pipeline(TfidfVectorizer(),
MultinomialNB () )

pipe.fit (X train,Y train)

prediction = pipe.predict (X test)

print (f"Accuracy score is {accuracy_score(Y_test,

prediction) :.2f}")

print (classification report (Y test, prediction))

Accuracy score is @.84

precision recall fl-score  support

2] 8.89 8.78 8.82 176

1 g.8@ 8.91 @.85 184

accuracy @.84 368
macro avg 8.8 .84 @.84 368
weighted avg 8.8 .84 8.84 368



wellnnl 184 lg éuy pell dé Ul

doclal lanioll aJl

pipe = make pipeline (TfidfVectorizer(),

SVC())
param grid = {'svc kernel': ['rbf', 'linear', 'poly'l],
'svc _gamma': [0.1, 1, 10, 100],

'sve__C': [0.1, 1, 10, 100]}

svc_model = GridSearchCV (pipe, param grid, cv=3)
svc model.fit (X train, Y train)

prediction = svc model.predict (X test)

print (f"Accuracy score is {accuracy score(Y test,
prediction) :.2f}")

print (classification report (Y test, prediction))

Accuracy score is 8.85

precision recall fl-score  support

8 8.83 8.87 8.85 176

1 8.87 8.83 8.85 184

accuracy 8.85 368
macro avg .85 .85 8.85 368
weighted avg 8.85 .85 .85 368

elliw Ul

By sall) Eoedlaadl i g ) G0 gl jltiad) el Jinall ol sl Diall oda e 5
§pgzmed] Slinad] par el il dxdlaedl 8 las pa L5 dos s &y jall (NLP) Ll
1 515yl Naive Bayes sl &-%85 JI 84 . &l dade B> Oy
Zasll lganall A ol 961 Gy (sl oo o5 A5 (Y684 &3 855 &315501 B
word Sl e o DL Gt IS e ST S 3Ll s Sa ikl
s Jslb-Lu Hls recurrent neural networks & ,Scall izl LI embedding
Y Al g’

:Janoll

https://towardsdatascience.com/arabic-sentiment-analysis-5e21b77fb5ea



https://towardsdatascience.com/arabic-sentiment-analysis-5e21b77fb5ea

(@l ) (el gl bl pelitodl Judas (5

(Ol yedl) Gl gl aobu geliodl Judai (5
Sentiment Analysis of Arabic Text Data (T'weets)
doa60Jl

Arabic sentiment &yl sliall s de gazes 0 5 ol SULN s pazee pazey 35,001 B
Jeb><d deep learning Ganll (el I Sl 850 4 25 g el corpus
.Arabic sentiment analysis iv 2l elial

ASTIL 03 6T LS elaadl oo Jlme Gonll 203 Jo Juasl g iadl 1da a ol
Sl sl ooy b s 2y 3 Mol Slods wa ol o3l £ 2L 258 Dk
A oo ol el sl s o (S0 o 0 53

skl 03 g e s I Y Lyl e Voo Selidl o 0187 clds ye ol G um g
Ll elials sarcasm &gl oo Lgagd YN S ¥ Coon (0 suiine il s o
&5 JI Ly hyperbole allls negative emotions

oo S Gy eliedl oo $ialSUl BN Gyl LB isball sda oo o2 5V
s O ooead) s lgmnlas LS Jalge o ol poliad) Ll oy delall adg) Ao
ezl 3LV 13 e dall decs I S el ]

ablwlg Jloc Ul oms

4, éJJ\ C,or...U :\:ujd\ JGLI«J\ o0 3“'}""?“ J"J}:J oda CJLL:J\ 3“’)’“'?“’ o= Kfiﬂ cwld
Aol peliall o) Grasd) el ol 5edenl) 3,20

Oetd Gl ol all ey Lol Arabic Tweets Dataset & ol ol 500l ULy de gaces 0585
.negative iwy Positive i)

oy ) ] pas AU S skl o ga alnd Ske o o b

Sl S B s o Gl 0IST13) ol ) i e By el smn s 5Ly o2
ke g VI ol T e Liiss 2d ol ol Ly il ot

Cablpally il o oy Gl 16 LS Gl 5l Foloms] ) Uity 365,801 p s 05 s ol
4 Luaniall



oehnl 2142l duypcll acl

count

20000 A

15000 4

10000 4

5000 4

dass

B35 S 3ol J b Length of tweets culayycill Johb .1

84

Tweets_len

dass

RV thajd,;ﬂ\ sJe :Number of words count cilod4)l 22 .2

word_count
IS @ @ 5

ra

=

dass

845,35 S 3 Joxdl sue :Number of char G yalliaac .3




(@l ) (1 pell gaidl Ul yelitall Jylas (5

5 2 3 8

char_count
&

neg pos

dass

= &5 B 8

ol GoldSI J b o se :Number of sentences JoaJl 2ac

10

o0 “
neg Fos

dass

ol G Jeadl Jsb b 52e : Average words length cilodAl Job uwgio

5 “
neg pos

dass

=
@

sentence_count
=)
b4

=
=

=
N

- v

w

awg_word_length

~

-

o

ol G Jeadl Jsb b 52e : Average sentence length dlonll Jgbo nugio

10

8

4

2

o
neg pos

dass

aug_sentence lenght
o




wellnnl 184 lg éuy pell dé Ul

Ul jroJl Guwaia
oan BLS| sl ¢ Jld) SULII 3 503 sV o) ] (5T dnplg (5T s S
g el Canad Gueles 18 ) ol

e L ——
‘ > v |
Wl jroJl clowul
.Length of tweets i &l Jsb .1
.Number of words count &lsJl sas .2
.Number of char & Yl sae .3
.Number of sentences Joxl s4e .4
.Average words length &llsdl Jsb v gs .5
.Average sentence length izl Job L gn .6
gl
RNVPE LY 0% I NN S PV
ol JhalS S sluslsns 2
By 30 L}féqj;\!\ sde .3
g% IS4 Jedl sue 4
ol GoldS Ik hwge .5
ol sl @ el Jsb v g L6

iles s3] @55 numpys gensimy pandas ©leSs plisenl s UL Gl caad
.Seaborn plsels SlalaseJl e Lid] o5 -scikit-learn pldenl dwall (e Gaoall /el



impo

impo:

from collections import Counter

impo
impo:
impo
impo
impo

from plotly import graph_objs

(ealay i) o el gail b selitedl Julai (5

rt pandas as pd
rt numpy as np

rt nltk

rt pandas as pd

rt re as regex
rt numpy as np
rt plotly

from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, RandomizedSearchCV

from

import matplotlib.pyplot as plt

time import time

Xmatplotlib inline

import seaborn as sns

impo

impor

impo
nltk

rt plotly

rt cufflinks as cf

rt re

.download( "punkt')

GlAaollg bl alcgonn
:CSV (ypidhe e JB-5YI ULy (4SS5

(344,25 45000) Train.csv .1
(344,25 45000) test.csv .2

Bl 5 gas o SV SULy g 500) b LS UL ot 07 LesS 3315 Copeld a1

:(Class column

I el e UL e azes (6 g0

<glass 'pandas.core.frame.DataFrame'>
RangelIndex: 45275 entries, 0 toc 45274
Data columnzs (total 2 columns):

# Column MNon-Null Count Dtype

o] class 45275 non—pull object
1 Tweets 45275 non-null  object
dtypes: cbject(2)
mempEy usage: 707.5+ EE

class Tweets

neg e o8l ) yum god cps IS et ) e

neg nll e S i b s s s g
neg  #s D edldnal s s e JU_

neg £ oolen diefs et ot gl eldaall e

neg o JaSt dila ol P

wyJall bl



wellnnl 184 lg éuy pell dé Ul

8,30 o815 L "class” sdss MTweets' s s JI by cdbagiadl &4l a "class’ (L
Ao o] olos] B3uonall pusenall

JUiA U bl

<class "pandas.core.frame.DataFrame'>
RangeIndex: 115320 entries, 0 te 11318
Data columns (total 2 columns):

¥ Column MNon-Null Ceount Dtype

o] class 11520 non—null object
1 Tweets 11520 non-null object

dtypes: object(l)
memory usage: 180.1+ EB

L] o cempty entries 48l VYL Cle 018 test.csv wils OY ks

class Tweets
0 neg Tl gl e ue pad o @)
1 neg -l el of Jar g ppnll Gl assm
2 neg s apd ost ooy ciladall e lt Joledll 20
3 neg S @ el gl g
4  neg Bl Lomes it @)

46 o)l daleoll
data mining <ULJ!l gzl L5 » Data preprocessing Ul il dxdlaoll
UoxSle b ol Il DBy 0585 b L s Goed I ALY SULY g (oS
e el e g5 O Jazowadl cyas ciiane Slalzsl ol Sl J) i S/, diucs é s
Gdlaodl s A odn o oo &y By b SBL D) ddlaall ans s UasY)

zdleal e dyyed 29591 UL slael UL din]!

S ol o sl Bk s UL 23 5] 5 I ] Eollaall e Dol
Cleaning uAiil .1
.(Remove URLs) URL :.ste dI3]  ©
-(Remove punctuatuions) ¢34l ol A3 o
.(Remove longation) dU=u¥1 dl}] o
.(mentions <|;LiY1) Remove usernames ;e dsonel| slend A1) o



(@l ) (el gl bl pelitodl Judas (5

Remove special characters iwlsJl & >V dl3] o

.Remove numbers el SNH] 5l o
Text processing yagnniJl dallco .2

.Tokenize ; xSl o

.Stemming @.led\ o

ULl LA
Sl i L) UL slaey degall +152Y1 o1 Data cleaning bl ades aa
ikl us . Bag-of-word representation

| fulldf['Tweets'].head()

a
1
2
3
4
Name: Tweets, dtype: object

&2 lg iy jLirdg Ul
bl o 550w Bl dollSy (olalS J] el oS 0 Tokenization je 21 555
oda 3d> g0 SlalS J) - S JI Loy S8 oledley f K05 oMoy Y b5 olde s
LehoSTL 3l B 2ndU Zawls 5 5]l
e el demns gl e sall Sl @l s e 0 Stemming sda<d) 0555
(Gre) JKo Jos am stems | gdae) i N e e Pt T
.43l morphology
2ol il o o 2SN j3laddl oo a6 @sdoead) EAULs s3doesdl L el JISCEDU G g
ARl 3Ll &y ol
ey el mpdanll oy
A a1 e Glas Bovalie bl 06 ool J ool o 55 &Y T 0
Lol JSC2I Lgalaenal Bl ] arloall 035 ol DL ) o b L) ©
stemming G’i"“ﬂ‘ e Jiadl ga



oellhall 218illg du pell el

waiting

ehsel clu sl s o Nl onltk LS plead o opall e
ol &> Porter Stemmer el G.Jo,d\ las 025 (3 A nltk.word tokenize
22100 Lo do =l &L ol 5!

class Tweets text Tokenized
0 Neg s 08 U i GR GuS FE LR O SR [ G s S S O e, 8]
1 neg ol F o GRS g L a1 s [Joom s i Lol a0 s g [=]
2 neg Jy el sl aaanl s s ) JOSAY) [Cef oa] aaml las s coi JSRIY g]
I R . e e [
4 neg o d& s 20 @ [ 0 da 0 @) 4]

lodAJl 6oils

o el gl A pa Glazsd BoW sl bag-of-words wldSIl di> Tos
S el Sla 5 e el sa LS ol Blgelisen

el o Dl sall Y B b sy aaltienal (Ko 0n5 DAL Loy gl 1

s5eb s (e Ly sde IO (e (dictionary wsel) wordlist LS A5 sLA] o
LS oyl BBy e pazes e 3005 LalST IS

agJul

gl jlaniul =1 6y ol

SlesYl Cangls o sy .J:.:...‘.:J\G.S_}A;JHJA&»L@Aﬁd&éﬂq‘ﬂéw\t}é}oi&qﬂy

wouldl s ALy 4yl 5> e 8 )Le Logistic Regression s sU!

stratified split i)l pndeldl jlest :7:3 Hlest ico)l e & ol dannts



(@l ) (el gl bl pelitodl Judas (5

Accuracy score is B8.75

precision recall fil-score  support

neg 8.71 8.83 8.77 4436

pos 8.88 8.67 8.73 4575

accuracy 8.75 9855
macro avg 8.76 8.75 8.75 9855
weighted avg 8.76 8.75 8.75 9855

U @b @ino :2 dyyaill
Naive Bayes Ciwas plidcul qoow (el 436 JgleaS

NERCPUSIRES (R IPY VR Wt WA PR Wt PR |

Accuracy score is @.74

precisien recall fl-score  support

neg a.77 8.69 8.72 4438

pos a8.72 6.86 8.76 4575

accuracy 8.74 9855
macro avg a.74 8.74 8.74 9855
weighted avg a.74 8.74 8.74 9855

bl 2l g 151001 Ciaad recall level gl 2Vl (5 gme (olisul B30 ol LS
.data skewness SULII Gl >l e Laxb 0 G 08 s ls cnegative class

o ol s o s ) JMou ) im0 gzl 0 LSy Dol 58Tl oyl 0
oz sl 51Nl e Teest Data ,LesY ULy cacias e 5 S Lg,&-ﬁﬁ\ Cswu

JuiA ol N

e e Lgaled eliadl W55 5LtV Sl Joesy o3 cias il e ) gall da
dta Tweets <l il (Class £l 1pssee Jo Gy Gy CSV Cile J] ©UL)
Sl o 52l sentiment labels poliall Sluandd Gy yme w55 2o 5Ll &e 45000
ENERPE

elliw Ul

G plisely LS L) e Y do b 35 8 oo 8l SUsddl Wl4e 5L5 0
Jelosd G 3,0 ada Bpaiall Jonll sdomy Lz 3y Soliall o s 1 il
o Aall ol GBI L el Geliadl e CitSlly iyl g ol e el
el sy el el



wellnnl 184 lg éuy pell dé Ul

AL Jondl Ua L 201 i 35 mell 25 socdl pltenly 3y 3l oLl 5 gl Gl o5 3

o 2SI Ll dla . JYI (hail) dlgen b dags dny ) el 5200l 0 5Ll o]
oo a peliadl foloed G I USRI a5l 5l RS n o) o Aol B lnall
S Jsb) kedl Glaiall e 2y LY Slal e 2S00 elti] 5 el JYI el
e goread Cnatll B3 Gindb oo s Koy 6l el L ol side (3Nl s
VLU o ies 3ue) SVl s bl caends ol b S0 dsdowad] ol obly
B Sy O e Gl e AL & s 350 B3, 0585 O Jaomadl (e o(Ekdl
O 2l o Y (Gl Sy e pazes 3315) LW LVl o 281 DL 52 Choanll
SOl a3l e — I3 e 550k cadnedl LS ks S e ¥ Ve 45275

REPVEPREIRIN] u.:—fai&;ﬂ\ Ole glaodl e

:Janoll

https://medium.com/analytics-vidhya/sentiment-analysis-of-arabic-text-data-
tweets-4e96c8da892b



https://medium.com/analytics-vidhya/sentiment-analysis-of-arabic-text-data-tweets-4e96c8da892b
https://medium.com/analytics-vidhya/sentiment-analysis-of-arabic-text-data-tweets-4e96c8da892b

o)l Lol pladiwl du el Alndll 1gi (6

Gloc)l pdcUl pladiwl dwjpc)l Alndll adgi (6
Generate Arabic Poems using Deep Learning
-Arabic poems &; 2l Lladll 42 PyTorch RNN 5 50 ol oo Aliall oda

3 o Lsfs SULII o) 2 laoll 3L Loy YT

import numpy as np

import torch

from torch import nn

import torch.nn.functional as F

AUl Jroas
Sl ab s> 5 Arabic poems text file L a)l HlasH 2l kol Jeoms p g (M5 Uy
.hﬁ;JquéaM;Jiﬁmwoladbu

# open text file and read in data as “text’

with open('all data.txt', 'r',encoding="utf-8") as f:
text = f.read()

Gaw;gic}fuiuﬂf;b) B> 1OOJ)TOAL;JL>£JD}:—>

text[:100]

"Jlex ]l 5 8 JUES oo \n\ndlog g 3y Loidly oolss\n\n Y guies
ooad Le sl \n\ndlaidly oel a5 4545 ¢l s\n\nao!
b god &y o sl By slans €155 5y

oy jLigsg i
el SN L5 r I g (e a5 2123 2 3T oo DS
encode the text and map each character to an integer and vice versa

# we create two dictionaries:

# 1. int2char, which maps integers to characters

# 2. char2int, which maps characters to unique integers
chars = tuple (set (text))

int2char = dict (enumerate (chars))

char2int {ch: ii for ii, ch in int2char.items() }

# encode the text
encoded = np.array([char2int[ch] for ch in text])

BV a5l e ool 52l (55 0 LiSay Y

encoded[:100]



oelinall 2144llg dyy pell dé U

array ([13, 54, 25, 67, 25, 27, 25, 20, 6, 67, 30, 12, 67, 74, 2,
6, 6,

67, 20, 6, 28, 0, 20, 6, 37, 39, 39, 38, 28, 20, 54, 25,
67, 13,

20, 6, 72, 12, 20, 42, 66, 67, 38, 20, 6, 38, 8, 20, 6,
39, 39,

25, 0, 12, 22, 67, 30, 6, 20, 67, 12, 47, 20, 54, 6, 76,
20, 67,

36, 31, 12, 13, 39, 39, 38, 53, 46, 67, 25, 42, 46, 38, 67,
25, 54,

20, 47, 13, 67, 13, 20, 6, 46, 8, 20, 6, 39, 39, 13, 0])

wblul ool dalleoll
.one-hot encoded ;Lo d>I3 50 2 ides Y] LSTM sz «char-RNN $

~

def one hot encode(arr, n labels):

# Initialize the the encoded array
one hot = np.zeros((arr.size, n labels), dtype=np.float32)

# Fill the appropriate elements with ones
one hot[np.arange (one hot.shape[0]), arr.flatten()] = 1.

# Finally reshape it to get back to the original array
one hot = one hot.reshape ((*arr.shape, n labels))

return one hot
O e uyjai wleda Jor
.o,k mini-batches s e lass ¢ L23] Lol b 5 (bl oda e coyil)
s ] Loy arT JolaoS Lo 53 o3 S 85080l G Y1 dob (JaI b
o LS e ks I8 dsb 055w .Batch size dawly ladgiss (S B
.seq length
CJU:QJ.:UiU!
lads Lah 1) 0580 S i) Gl o Galill g pLAll Loy o 2 051 L1
Ll dalSs a0
olads Jlarr s J) zlow (S sy
8 rnal) L3lads e Jpmamel) L)l S5 LiSay (2 snmall adn Luld el O dn 0V
Glesall judalg g jai
training 4l 43> » ys input batch JB-s¥1 dads & X Eom X,y (inds g
g B e L] o N XMQ@&;M batch

def get batches(arr, batch size, seq length):



ool pleil plasiwl éuw pell Alndll agi (6

batch size total = batch size * seq length
# total number of batches we can make
n _batches = len(arr)//batch size total

# Keep only enough characters to make full batches
arr = arr([:n batches * batch size total]

# Reshape into batch_size rows

arr = arr.reshape ((batch size, -1))

# iterate through the array, one sequence at a time
for n in range (0, arr.shape[l], seq length):
# The features
x = arr[:, n:n+seq length]
# The targets, shifted by one
y = np.zeros_ like (x)
try:
yl:, =11, yl[:, -1]
except IndexError:
yl:, =11, yl[:, -1]
yield x, y

x[:, 1:], arr[:, n+seq length]

x[:, 1:1, arr[:, 0]

elaliouy)
ol Lo (659 8,80l UL e O > 100 e lads e Jsunmdl Jlo Lses

batches = get batches (encoded, 8, 50)

x, y = next (batches)

# printing out the first 10 items in a sequence
print ("x\n', x[:10, :10])

print ("\ny\n', y[:10, :10])




oelinall 2144llg dyy pell dé U

s Al B o w3l o2 S0y X e 52y 0l 55 S

PyTorch plaaiwl a4l @y i
S gy ad 53T (U1 OIS g o

o Al olleally Slidall dasw Tl 420 &y ddowd PyTorch padel (U5 aa
.forward pass elf}l\ S el &b i

# check if GPU is available
train on gpu = torch.cuda.is available()
if (train_on_gpu) :
print ('Training on GPU!'")
@lees
print ('No GPU available, training on CPU; consider making
n_epochs very small.')

3,55 (CPU) 38,0l Gadlaadl 305 o o 5tidls «(GPU) oo s I dedlins 815 355 Y
J= e n epochs @l il sde Jax
class CharRNN (nn.Module) :

def init (self, tokens, n hidden=256, n layers=2,
drop_prob=0.5, 1r=0.001):

super () . __init_ ()
self.drop prob = drop prob
self.n layers = n layers

self.n hidden = n_hidden
self.lr = 1r

# creating character dictionaries

self.chars = tokens
self.int2char = dict (enumerate (self.chars))
self.char2int = {ch: ii for ii, ch in

self.int2char.items () }

## define the LSTM
self.lstm = nn.LSTM(len(self.chars), n hidden, n layers,
dropout=drop prob, batch first=True)

## define a dropout layer
self.dropout = nn.Dropout (drop prob)

## define the final, fully-connected output layer
self.fc = nn.Linear (n_hidden, len(self.chars))

def forward(self, x, hidden):
'''" Forward pass through the network.
These inputs are x, and the hidden/cell state “hidden'.



o)l Lol pladiwl du el Alndll 1gi (6

## Get the outputs and the new hidden state from the lstm
r output, hidden = self.lstm(x, hidden)

## pass through a dropout layer
out = self.dropout (r output)

# Stack up LSTM outputs using view
# you may need to use contiguous to reshape the output
out = out.contiguous().view (-1, self.n hidden)

## put x through the fully-connected layer
out = self.fc(out)

# return the final output and the hidden state
return out, hidden

def init hidden(self, batch size):
''"'" Initializes hidden state '''
# Create two new tensors with sizes n layers x batch size x
n_hidden,
# initialized to zero, for hidden state and cell state of

LSTM
weight = next (self.parameters()) .data
if (train on gpu):
hidden = (weight.new(self.n layers, batch size,
self.n hidden).zero ().cuda(),
weight.new(self.n layers, batch size,
self.n hidden).zero () .cuda())
else:
hidden = (weight.new(self.n layers, batch size,

self.n hidden) .zero (),
weight.new(self.n layers, batch size,
self.n hidden) .zero ())

return hidden

def train(net, data, epochs=5, batch size=10, seq length=50,
1r=0.001, clip=5, val frac=0.1, print every=10):
''"'" Training a network

Arguments

net: CharRNN network

data: text data to train the network

epochs: Number of epochs to train

batch size: Number of mini-sequences per mini-batch, aka
batch size

seq length: Number of character steps per mini-batch

lr: learning rate



oelinall 2144llg dyy pell dé U

clip: gradient clipping

val frac: Fraction of data to hold out for validation

print every: Number of steps for printing training and
validation loss

# keep track of training and validation loss
train loss = 0.
valid loss = 0.
valid loss min

I oo

np.Inf # track change in validation loss

net.train ()

opt = torch.optim.Adam(net.parameters(), lr=1lr)
criterion = nn.CrossEntropyLoss ()

# create training and validation data
val idx = int(len(data)*(l-val frac))

data, val data = data[:val idx], data[val idx:]

if (train on gpu):

net.cuda ()
counter = 0
n chars = len(net.chars)

for e in range (epochs) :
# initialize hidden state
h = net.init hidden(batch size)

for x, y in get batches(data, batch size, seq length):
counter += 1

# One-hot encode our data and make them Torch tensors

x = one hot encode(x, n chars)

inputs, targets = torch.from numpy(x),
torch. from numpy (y)

if (train on gpu):
inputs, targets = inputs.cuda (), targets.cuda()

# Creating new variables for the hidden state,
otherwise

# we'd backprop through the entire training history

h = tuple([each.data for each in h])

# zero accumulated gradients
net.zero grad()

# get the output from the model
output, h = net (inputs, h)

# calculate the loss and perform backprop
loss = train loss = criterion (output,
targets.view (batch size*seq length) .long())



SLoc) ol il pplaaiawl duu pel 2ilinéll gl (6

loss.backward ()

# "clip grad norm’ helps prevent the exploding gradient
problem in RNNs / LSTMs.

nn.utils.clip grad norm (net.parameters(), clip)

opt.step ()

# loss stats

o)

if counter % print every ==

seq length) :

tensors

otherwise

history

targets.cuda ()

# Get validation loss

val h = net.init hidden (batch size)

val losses = []

net.eval ()

for x, y in get batches(val data, batch size,

# One-hot encode our data and make them Torch

x = one hot encode(x, n_chars)
X, y = torch.from numpy(x), torch.from numpy (y)

# Creating new variables for the hidden state,
# we'd backprop through the entire training

val h = tuple([each.data for each in val h])

inputs, targets = x, y
if (train_on_gpu) :
inputs, targets = inputs.cuda(),

output, val h = net(inputs, val h)
val loss = valid loss = criterion (output,

targets.view(batch size*seq length).long())

val losses.append(val loss.item())

net.train() # reset to train mode after iterationg

through validation data

print ("Epoch: {}/{}...".format (e+l, epochs),
"Step: {}...".format (counter),
"Loss: {:.4f}...".format (loss.item()),
"Val Loss:

{:.4f}".format (np.mean (val losses)))

# save model if validation loss has decreased
if valid loss <= valid loss min:
print ('Validation loss decreased ({:.6f} —--> {:.6f}).

Saving model

... format (

valid loss min,
valid loss))

model name

checkpoint

= 'best loss _so far.net'

= {'n_hidden': net.n hidden,
'n layers': net.n layers,



oelinall 2144llg dyy pell dé U

'state dict': net.state dict(),
'tokens': net.chars}

with open (model name, 'wb') as f:
torch.save (model name, f)

yjadl

Slik sues oMol sbsd ) 7350l Ly Elaned! QLI Oldsl saows O o
50 g google colab e wlib 5 plisenly Leosi coad ud) (& 5 20 LSTM n layers
lele 4 a1 G xaul s epochs & b

# define and print the net
n_hidden=512
n layers=5

net = CharRNN(chars, n_hidden, n layers)
print (net)

CharRNN (

(lstm) : LSTM(82, 512, num layers=5, batch first=True,
dropout=0.5)

(dropout) : Dropout (p=0.5, inplace=False)

(fc) : Linear (in_features=512, out features=82, bias=True)

batch size = 128

seq length = 100

n _epochs = 50 # start smaller if you are just testing initial
behavior

# train the model
train(net, encoded, epochs=n_epochs, batch size=batch size,
seq_length=seqg length, 1r=0.001, print every=10)

# Here we have loaded in a model that trained over 50 epochs
‘rnn_50 epoch.net’
with open('rnn 50 epoch.net', 'rb') as f:
if train on gpu:
checkpoint = torch.load(f)
else:
checkpoint = torch.load(f,map location=torch.device('cpu'))

loaded = CharRNN (checkpoint['tokens'],
n_hidden=checkpoint['n hidden'], n layers=checkpoint['n layers'])
loaded.load state dict (checkpoint['state dict'])

<All keys matched successfully>



o)l Lol pladiwl du el Alndll 1gi (6

olee 1Y PyTorch el UDACITY - DeepLearning ;e o2l il RES| o

el AN G T ey Js ) e 5T (5 el Gt laz s Jais JB-5YT e
.Sdoea]l

def predict(net, char, h=None, top k=None):
''"'" Given a character, predict the next character.

Returns the predicted character and the hidden state.
LI B

# tensor inputs

x = np.array([[net.char2int[char]]])
x = one hot encode(x, len(net.chars))
inputs = torch.from numpy (x)

if (train_on gpu) :
inputs = inputs.cuda ()

# detach hidden state from history
h = tuple([each.data for each in h])
# get the output of the model

out, h = net(inputs, h)

# get the character probabilities
p = F.softmax (out, dim=1) .data
if (train_on _gpu) :

p = p.cpu() # move to cpu

# get top characters
if top k is None:

top ch = np.arange (len(net.chars))
else:

p, top ch = p.topk(top k)

top ch = top ch.numpy () .squeeze ()

# select the likely next character with some element of
randomness

p = p.numpy () .squeeze ()

char = np.random.choice (top _ch, p=p/p.sum())

# return the encoded value of the predicted char and the
hidden state
return net.int2char([char], h

def sample(net, size, prime='The', top k=None) :

if (train on gpu) :
net.cuda ()
else:
net.cpu ()

net.eval () # eval mode



oellhall 2184llg du pell el

# First off, run through the prime characters
chars = [ch for ch in prime]
h = net.init hidden (1)
for ch in prime:
char, h = predict(net, ch, h, top k=top k)

chars.append (char)
# Now pass in the previous character and get a new one
for ii in range(size):

char, h = predict(net, chars[-1], h, top k=top k)

chars.append (char)

return ''.join (chars)

print (sample (loaded, 300, prime='Lsl"', top k=5))

:Janoll

https://github.com/AhmedAbdel-Aal/Arabic-poem-
Generator/blob/master/Notebooks/Arabic%20Poem%20Generation.ipynb



https://github.com/AhmedAbdel-Aal/Arabic-poem-Generator/blob/master/Notebooks/Arabic%20Poem%20Generation.ipynb
https://github.com/AhmedAbdel-Aal/Arabic-poem-Generator/blob/master/Notebooks/Arabic%20Poem%20Generation.ipynb

59 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

rolc Ul olaAiwb (s Jljj ugluwb 6wyl 25lnd )l A g (7
Arabic Poems Generation in the Style of Nizar gtoc)l
Qabbani using Deep Learning

sy iy L@l B! Lty LN BN Bam 5les 5 das el il 13)
oS 5 geSJl

SPIEEWREFNPRVRE W FOUR THES PR POREIPANE SIS N RRAURTEE - 90y
A I B 05 1 LA o e Bas IS pldely aldl ) 5

I DLl gl L oty slaasl

Aaaies DUl L gares Ll @
s UL Bdlas o

RNNJ a5l daledl bz @

(Rl o 015) ) B, il 15

GGItHUD §5 gied Jarly (o o3 oLV I8 8le JU Y15 &0l o521 s (35555 Y
Jasdl

. N 3 u_DJ_Cle:j
ol Aol 5,61 A sdlly Codl Cdls I edilady gl Tﬂﬁ T,ou P VAN
LSt SULI o 58 BaS S abos OF o Lo (Y1 32 B 01875 ) BLoYL
Lo olacll Ll
s o e o Lk
Who are you
woman entering my life like a dagger
mild as the eyes of a rabbit
soft as the skin of a plum
pure as strings of jasmine

innocent as children’s bibs
and devouring like words?

52 o 0l b g paedl dlas] (e o (g oS Ll cOTPUS o gores eL23] J] o Sl 8 haS
(S8 sl o Blisll o Laases &35 28U w3150 o gall LSy casall (il 5 LS



wellnnl 184 lg éuy pell dé Ul _

ie gazes sLALy UL scrape gl sel s pell (Sey (BeautifulSoup Jas o> plisenl
SLL £ 0 55 Lol JS por mo gde ) il LSy Al ilidl Jlas Yl mar o (5500
el B b LS 32000 s e (g 505 b Oke S 6l etablons 1 ope Jolis Jof

oLl axodl JAndrej Karpathy ;s arly o sllaed) SBLII e J s o sl o

Los 0 8 s DLy e e iad 31501 SLET VLl o ALa oSS Lny gl oy o2 1 e
L2V 3 e NI e Jroy 8

Y 3 ] BLaYLs Sladl ) el o ol 1 53 5 ST G el S e
Gl Ml G s 0B (U3 e 35 3l 5l 5 S N B PPN e
eI G Gl e il 2L
Al Sl Ol Lo Y AT e b b s 231 e Gl £ J g olgmed] e el lin
(JaI Gpzrlpodl ) eall e sl e (6 5 Ol wlas I G
bl juAani
Lo 0B t\;-)‘b f‘)ﬁ:- Coo Jgda 2 Li) 5 shasell odn oS

Anteger to vocab wls,as Jl mmo sde @

Jnteger to vocab geows sde JlOlsiall o
s -delimiters lsdoeaS’ ULl plidenl CldS'S shias J] el sy L3 (U5 dny
o AN i Badae Sl e s L) Comnd) Sledle s BLE! e 08 2l Sl Sy (2l
LS pailises b e g 0T ale e "Thye's "bye” (Jledl o
S"" e 5o, tokenize e aslide e S e gel] CL;-)‘;! Al daw o5
i LS'LasB 55 | | Exclamation Mark | |

(.)Periodszs e

(o) Commaiols e

(\n) Return CL"')‘ °

(r\) Carriage Return Joldl ¢l-)) o

JS Jhad s (o350 s (@Blanodl) ool BLLs 5 g0 I s ) o saldl] s plisenal (i
AL LJSIL el dan) ) e Jgas Lo s Lol dadSaT Lo e,


http://karpathy.github.io/

61 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

adiloll lodcoll nuuA

U SV 301 S0 en layersbady ST iasee slal Joail ol e Joasw 5 sple e
el i Al Sladaedl 3B Jy Lo o peld I bl B35 G s

el J b isequence length o

el (> :Batch_size °

Al oyl g A ol 24l sde snum epochs e

031 poal (Aadl Juss :Learning rate  ®

L3l jae 3385l sde tvocab size o

oA PN =) :put:size .

vocab size ;o ol ¢ el Ao tembedding dim e
Lo Z\;L;dl RNN &80 iseall dal :I—Iidden_dim o
Ly ol RNN Ul sis in layers o

J-Cl-l-i.-le L I v oe

lisladll oLa3] smadl ol J] JUsY LSay copdall m3sadly Olabaall el A

!Generating poems

Lol pL3V Gl T o o 1 2001 a5 prime. word dos bde o S pLAN

”L.\i" (I/me)

T sladl Idgs Lsi.
Loy b gad adby. .
Jlxog Ylow! walias,.

il pgd da Licis
S ST S
L bl (eralang.
15883 Juo¥ 1 oo oY1 ghyiis. .
Dby Ylawl 2l
ODde g, .
s Lad s

Am I like this water?

And I stayed the Sheikh of our neighborhood ..
And you see fish and seas.

And you watch the understanding of ourselves

éu\ gLy r.l.a_’ olisl

Mo A o



oelbnll cl8allg dy ol dcll

Afraid of wood

And they sleep with extremism.

The nation is extinct from male origin.
Fish and seas migrate ..

I promised ..

To cancel

llL'." ( 0)

Lol ihs L
e S LSH Loy
DIV SRS Y S VPY IS I S

Shill wiy ¢ o> 1y8le Ja
ol giwog A&l g « ogwYl GaiJl,
!_e_.a_a_e.

Ll Jlas Lincisg
TS AR SU S ¥

s Lidd o o1

5 Lahs

O my successor cat
Bless us on my forehead
A caliph in the side of middle torture

Will I read alive, the cat forgets?
Black lily, scent and its level

So cut it ..

We kept asking ourselves

And in the recovery rooms,

And colors for dinner
Absolutely in

ll‘:)g" (We)

oo Ll L;_BJ_)\J-\ ui x5 Y
é—f)l—a'—ﬂ )‘—**’i Lé'_él'

Lewiny oY1 oy iis.

Slaxdl —Lgad yle go LY (ayiis..
Lerel)d e Lessne ..

5 o)_,t:_os!l > L PP R T SN T | B S W

e G ol o) L

M A o

Mo A o



Sroc aleil plariwl U 15 wglul dy el 2ilasll aygs (7

We experienced it

Do not think that I love you in the Gardens

In history news ,.

The nation becomes extinct.

The nation becomes extinct from its disgrace — mourning ..
Her eyes are on her arms ..

And the state broadcaster in the princess’s bodies?

O Lord, where is the relative winding?

“31 1” (Woman)

Le)S 51 40l ...

Lol L3 oale JS L.,

Uiy 5 dgull audieg

e Jelais. .

Liaiin dw> Lidsgg..

TS A_UJ_H &)J_oj

Loagdl e¥5a oY G

Sl wlom Sleyly Slesl cliw «Yie (s

o S ez

A whole woman ...

Oh every year in nature ..

The state broadcaster is in our wound

Beautiful optimism ..

We found a raped body.

And the state broadcaster ??

Of these are cilia

Who are these people watered deep down and exhausted with a literary head?

agAll

02un6Jlalgo

el e Bla )5 LSy RNN IS LY ol il o s 85501 s b
SPILBI

import glob

import re

import numpy as np

from collections import Counter

import torch

from torch.utils.data import TensorDataset, DatalLoader
import torch.nn as nn

import torch.nn.functional as F

import helper



oehnl 2142l duypcll acl

#get list of text files in data
poem _txt list = glob.glob('data/*.txt')

with open('raw corpus.txt', 'w') as outfile:
for fname in poem txt list:
with open (fname) as infile:
outfile.write(infile.read())

data dir = 'raw corpus.txt'
text = helper.load data(data dir)

view line range = (0, 10)

print ('Dataset Stats')

print ('Roughly the number of unique words: {}'.format (len({word:

None for word in text.split()})))

lines = text.split('\n'")

print ('Number of lines: {}'.format(len(lines)))

word count line = [len(line.split()) for line in lines]
print ('Average number of words in each line:

{}'.format (np.average (word count line)))

print ()
print ('The lines {} to {}:'.format(*view_line range))

print('\n’.join(text.split(’\n')[view_liHe_range[O]:view_line_range

[111))

d8.1u10Jl dalcoll
JIss Ly p 4% . pre-processing Al Lol ga DLy de o L;ﬂ dnd o s Jl
0UsT &I ol Gl laod]



65 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

.Lookup Table el Jgd> @
.Tokenize Punctuation o lolMe pes e

cadlJgaa
Yl ol 3.0 pxe J OIS g I N gtes cword embedding &S (yess s LY
wﬂ)ﬁ@ GL.;'.J}.' f).a.v ids

Vocab to 1ntw 5_9‘}‘»1 LAJJ&Q.H Jl C)La.lﬁ\ O* JLE:.:)U w}.ow\ °
int to vocab 4w b s LS JI B pnadl o JEII wssldl @

-(vocab to int, int to vocab) JuI tuple caall G el sl odn dnd

def create lookup tables(text):
Create lookup tables for vocabulary
:param text: The text of tv scripts split into words
:return: A tuple of dicts (vocab to int, int to vocab)

# TODO: Implement Function

#create a counter for all words in text
word counts = Counter (text)

#sort words from most to least frequent in the text
sorted vocab = sorted(word counts, key=word counts.get,

reverse=True)

#create int to vocab dictionatires

int to vocab = {ii: word for ii, word in
enumerate (sorted vocab) }
vocab to int = {word:ii for ii, word in int to vocab.items ()}

# return tuple
return (vocab to int, int to vocab)

8 Ul slolle jropi

s (23 & DladoeaS” Sbluad) plisenly SllS B shas J) o Sl sy p g
el o o oIS ] 530 U6 s elts] pentd] Mo LS foo 3 201 Lol
LIS paikides o me g Of 6l e "Ibye’s "bye”

G e Sga e aeldieal (s U1 Y1 p )Y token lookup Il Joazy o555
oS o il a3 o IS g el Ll 355 | |t e[|

e  Period (.)
e Comma(,)



wellnnl 184 lg éuy pell dé Ul _

Quotation Mark (")
Semicolon (;)
Exclamation mark (1)
Question mark (?)
Left Parentheses ( ()
Right Parentheses () )
Dash (-)

Return (\n)

JS had I (o350l (Blaodl) Jooldl) BLSLs 5 g0 ) o ) o saldl] 1 pliseal o
ptsns Y Ll e aSTE I LIS 52l ol A1 e s Lo ey B> ZaS6T e 50,
el S <dash” Lacl plasl e Yoty el o e 4018 s Ly Ll Sy 203

M| | dash | |" Jas ded

ol L) 1 plea W1 dle oo o3 20l oo o il o gl )] e 26 ol 1oy
) o Sl G S

def token lookup () :

Generate a dict to turn punctuation into a token.

:return: Tokenized dictionary where the key is the punctuation
and the value is the token

wnn

# TODO: Implement Function

punct dict = {'.': '||PERIOD||",
't '] |COMMA]| |,

"\r': '||RECUR]||",
'..': '||DOTDOTDOT]| | "',
"1': '||EXCLAMATIONMARK] | ',
"¢ ': '||QUESTIONMARK]||',
"(': '||LEFTPARANTH||',
") ': '||RIGHTPARANTH||',
"| |IDASHI| | ',
' | |[RETURN ]| | '}

L

)
N\ g

v
v

return punct dict

z

ot il Bl s G UL soar Eadlas ool s 31 ol & k23 (63500
daiy Lo & ,20 helpers.py —ihe dpreprocess and save data o ol 5,31 drxl 0
el

helper.preprocess _and save data(data dir, token lookup,
create lookup tables)

int text, vocab to int, int to vocab, token dict =
helper.load preprocess ()



67 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

. I\ II . E L 3 II Ll-i-.,
)L;;N\ Jles s RINN 50> 5 J:\.L\S IV o RNN GL.J Syl C)L’N\ 9\.\.\4 r}b g(,...».ﬁ\ i &5.9
RN IPRPRIN]

GPU JId ol (o G2

# Check for a GPU
train on gpu = torch.cuda.is available()
if not train on gpu:
print ('No GPU found. Please use a GPU to train your neural
network."')

No GPU found. Please use a GPU to train your neural network.
GlAaell
e goreal Chy e oS b ) TensorDataset pudsci Gins dodlaall Js¥l Sy T
LIl batching reaadl Jiss ws Jolacww 616 (DataLoader pe 212230 ¢by Aol UL
CJL:L:J‘ E.PM )‘JQ J\jb N LAJ:‘PJ shufﬂlng
sl o8 o5 By 85madl S350 o a3 5ok e TensorDataset pldseunly ©ULy s L] LiSla
Sl DataLoader
&Lon I
b plsels Batch size (s ¢l ol oLy o Batch data dls dizs p 5

.Datal.oaders TensorDataset
sy W B Y 05 oS0y DataLoader plisenl oSl pons Loy
e Rl Y ey It -C N o=l target tensorss feature tensors

.ere sequence length
redadadl ada Lo o 2 i) (Jladl o e

words = [1, 2, 3, 4, 5, 6, 7]
sequence length = 4

:v,fdl P JsY feature tensor S5 ol e

[1, 2, 3, 4]
tokenized Il 8 5ol AT Ao 3 ["word 4dSI1" ga Lladl target tensor 5SS O s

: L35 word value

‘target tensor O 5% G « sl feature tensor & I et Of e



wellnnl 184 lg éuy pell dé Ul _

[2, 3, 4, 5] # features
# target

def batch data(words, sequence length, batch size):

wnn

Batch the neural network data using Dataloader

:param words: The word ids of the TV scripts

:param sequence length: The sequence length of each batch

:param batch size: The size of each batch; the number of
sequences in a batch

:return: DatalLoader with batched data

#number of batches by integer definition
n batches = len(words)//batch size

#only full batches
words = words[:n batches*batch size]
y len = len(words) - sequence length

x, vy = [1, []

for idx in range (0, y len):
end = idx + sequence length
x batch = words[idx:end]
y batch = words[end]

x.append (x_batch)
y.append (y batch)

#wrapping tensor

data = TensorDataset (torch.from numpy (np.asarray(x)),
torch.from numpy (np.asarray(y)))

# Combines a dataset and a sampler, and provides single- or
multi-process iterators over the dataset

data loader = DatalLoader (data, batch size=batch size)

# return a dataloader
return data loader

Dataloader juial

d Jl gl 55 o com S5 (batching pezadl Dls LY 5800 s b ble oy
L

el Dataloader SULII Joasss 85l bt s 5LV ad SBLy Gan eliil ok ol
SlaaYly Sample x <Mdodl 3l Sam Jo fuas (U3t odlel Lsd ) U1
Ly Lol dataloader wUL! Juoss 5151 s Sample 'y

ooy Lod 3] ecibien (3 Jommall o) b b e Gt by ol 5801 e ol o
HE W



ml Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

torch.Siz
tensor ([ [

[
[
[
[
[
[
[
[
[

torch.Siz
tensor ([

e([10, 5])
28, 29,
21, 22,
17, 18,
34, 35,
11, 12,
23, 24,

6, 17,
38, 39,

25, 26,
7, 8,

e([10])

33, 26,

22,

31, 321,
24, 257,
20, 211,
37, 381,
14, 151,
26, 271,

9, 10],
41, 421,
28, 29],
10, 1111)

39, 16, 28, 11, 43, 30, 121])

olaail

oda Lj(lO ,5) jT (batch size, serial length) L oLl Sample x > 0559 ol o
‘batch_size (10) :Jais 1415 10 Sample vy J o558 of o s Dl

ool

A sllaoll test text <ULy JIL ol a Sample y (Sluad of Cadl 536 of o
0552 O o 32 dacdlly gy ) [32 031630 (29 (28] JlsY1 oo By (N

# test dataloader

test text
t loader

data iter
sample x,

= range (50)
= batch data(test text, sequence length=5, batch size=10)

33 Jolaall 215

= iter (t_loader)
sample y

data iter.next()

print (sample x.shape)
print (sample x)

print (sample_ y.shape)
print (sample y)

(
(
print ()
(
(

torch.Siz
tensor ([ [

torch.Siz
tensor ([

e([10,
1,

~

O oW Joy Ul wWNE O

N SN S SN SN S SN S~ N
O W o Jo Ul b W

N N SN SN SN S SN S~ 0~

[

e ([10])
5, 6,

O J oUW

N SN SN S N~ o~

41,
51,
6],
71,
81,
91,
101,
117,
121,
1311



wellnnl 184 lg éuy pell dé Ul

durac)l dAuill Ly
S GRU plaseenl jss 45 . PyTorch J el s>yl &5 plasely RNN dizy p s
il I JIsl s tke (RINN JLSY .LSTM

Gl s init e
il LSTM/GRU &b &gl Uls cinit hidden o
.fl.&\ SN dls forward @

SLEY Al pasencn B Qlghios dmanl) B Sl oLl dngdl s o5 of o
ides Wy Sl pes ety oY1 LYl fated lidall o sloYl

Llas das word scores ol ol 5 0 zﬁ';\ﬂ Ladll g Gsfa\ fda S 055 ol o
I (S ERUPICRNEN N[ [ESN DY W L R PR PR PIEN [ WL
.@,’v\y 2J5 55 2adST LS

alAnllo

QU pLall LeSay ¢ JolSIL Alaned) Ladall JJ s o) Istm Sl e dSS 00 ST 11
Istm output = Istm_output.contigious().view(-1, plasel,
self.hidden dim)

shaping S5 d0 e LS Slrs e 5,531 all Lo Jpasdl Sy .2
s Lo oSO ol 450 Zadall Sl s

# reshape into (batch size, seqg length, output size)
output = output.view(batch size, -1, self.output size)
# get last batch

out = output[:, -1]

class RNN (nn.Module) :

def init (self, vocab size, output size, embedding dim,

hidden dim, n layers, dropout=0.5, 1r=0.001):

mwn

Initialize the PyTorch RNN Module

:param vocab size: The number of input dimensions of the
neural network (the size of the vocabulary)

:param output size: The number of output dimensions of the
neural network

:param embedding dim: The size of embeddings, should you
choose to use them

:param hidden dim: The size of the hidden layer outputs

:param dropout: dropout to add in between LSTM/GRU layers



71 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

wnn

super (RNN, self). init ()
#Implement function

#set class variables

self.n layers = n_layers
self.hidden dim = hidden dim
self.output size = output size

# embedding layer
self.embedding = nn.Embedding (num embeddings = vocab size,
embedding dim = embedding dim)

# define lstm

self.lstm = nn.LSTM(input size = embedding dim,
hidden size = hidden dim,
num layers = n layers,
bias = True,
batch first = True,
dropout = dropout)

#define fc layer
self.fc = nn.Linear (hidden dim, output size)

def forward(self, nn input, hidden):
Forward propagation of the neural network
:param nn_input: The input to the neural network
:param hidden: The hidden state
:return: Two Tensors, the output of the neural network and
the latest hidden state

#get the batch size
batch size = nn_ input.size (0)

#get embedding
embed = self.embedding(nn_input)

#get lstm output
out, hidden = self.lstm(embed, hidden)

#stack the outputs of the lstm
out = out.contiguous().view (-1, self.hidden dim)

out = self.fc(out)

# reshape into (batch size, seq length, output size)
out = out.view(batch size, -1, self.output size)

# get last batch

out = outf:, -1]



wellnnl 184 lg éuy pell dé Ul

# return one batch of output word scores and the hidden
state
return out, hidden

def init hidden(self, batch size):
T
Initialize the hidden state of an LSTM/GRU
:param batch size: The batch size of the hidden state
:return: hidden state of dims (n layers, batch size,
hidden dim)

# Implement function

# initialize hidden state with zero weights, and move to
GPU if available
weight = next (self.parameters()) .data

if (train _on gpu):
hidden = (weight.new(self.n layers, batch size,
self.hidden dim).zero () .cudaf(),
weight.new(self.n layers, batch size,
self.hidden dim).zero () .cuda())
else:
hidden = (weight.new(self.n layers, batch size,
self.hidden dim) .zero (),
weight.new(self.n layers, batch size,
self.hidden dim).zero ())

return hidden

0lAlg ool JLiLis Ul by yc
DN o sledanl pmw . Al sl LY Godard adiiy Lod ) RININ 5 psen

o LS oyl il () Se Sy

loss = forward back prop(decoder, decoder optimizer, criterion,
inp, target)

o2 S idsall Aol a1 s average loss (Uasl) 8l L oo e ol s
o Uasdl ol e J el LiSles 61 ST . RINN(inp, Hidden) sledoal b oo el )
. Loss.item() sleduly s plos 5o b

o g I odlae 5 3l I GBLL JEL (il (GPU) Slopos Il dedlns 305 5 <3813
s (GPU)

def forward back prop(rnn, optimizer, criterion, inp, target,
hidden, clip=5):

Forward and backward propagation on the neural network



73 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

:param decoder: The PyTorch Module that holds the neural
network

:param decoder optimizer: The PyTorch optimizer for the neural
network

:param criterion: The PyTorch loss function

:param inp: A batch of input to the neural network

:param target: The target output for the batch of input

:param clip: Max norm of the gradients

:return: The loss and the latest hidden state Tensor
mwwn

# move data to GPU, if available
if train on gpu:
rnn.cuda ()

# perform backpropagation and optimization

4=

Creating new variables for the hidden state, otherwise
we'd backprop through the entire training history
h = tuple([each.data for each in hidden])

4=

# zero accumulated gradients
rnn.zero grad /()

# get the output from the model
if train on gpu:

inp = inp.cuda /()

target = target.cuda()

output, h = rnn(inp, h)

# calculate the loss and perform backprop
loss = criterion (output, target)
loss.backward()

# “clip grad norm’ helps prevent the exploding gradient problem
in RNNs / LSTMs.

nn.utils.clip grad norm (rnn.parameters(), clip)

optimizer.step ()

# return the loss over a batch and the hidden state produced by
our model
return loss.item(), h

o)l Sl g yas

L) 301 0l 35 ) B8 Blgradie) UL E5al s 321 Dy lame JLaST s
uyaillal

G e B Copi Al eda gy Train decoder dls Gl &2l 4025 o

s s o2 Bl o e IS B3 el po (2,8 @ E3ubomall Sl 21 5ka) a3



wellnnl 184 lg éuy pell dé Ul

S Dledaddl mo dadaalloda nty Lad show every n batches dolaodl plidenls o3 1
BSICL PO g
def train rnn(rnn, batch size, optimizer, criterion, n epochs,
show every n batches=100) :
batch losses = []

rnn.train ()

print ("Training for %d epoch(s)..." % n_epochs)
for epoch i in range(l, n epochs + 1):

# initialize hidden state
hidden = rnn.init hidden (batch size)

for batch i, (inputs, labels) in enumerate (train loader,

1)
# make sure you iterate over completely full batches,
only
n batches = len(train loader.dataset)//batch size
if (batch i > n batches):
break

# forward, back prop

loss, hidden = forward back prop(rnn, optimizer,
criterion, inputs, labels, hidden)

# record loss

batch losses.append(loss)

# printing loss stats
if batch i % show every n batches == 0:
print ("Epoch: {:>4}/{:<4} Loss: {}\n'.format (
epoch i, n epochs, np.average (batch losses)))
batch losses = []

# returns a trained rnn
return rnn

asiloll cilodcoll

el U5k Je sequence length sl e

sl - e Batch size b3l o

Lo oyl v Aol 2l sae e num_epochs Lol e
Adam s (2l Juss e learning rate ksl e
L3l jae dau Al (Sl sue e vocab size sl @

AN cslladl 2l e output:size L.l e



75\

Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

vocab size o ol {menadl dn e embedding dim Javs!
Ly ol RNN I isdl dndl e Hidden dim Ll
Ly SoBI RNN @bl /olidll sue e n layers sl

Bl Lgb wlas O o ) Sl sas ¢ show every n batches L.sl

ol sl

23 353 yod) Uil /5 Slabnoll edin oty o2 1yl glicdl e 3 s o1 13]

# Data params

# Sequence Length = # of words in a sequence
sequence_ length = 10

# Batch Size

batch size = 128

# data loader - do not change

RNN

train loader = batch data(int text, sequence length, batch size)

# Training parameters
# Number of Epochs
num epochs = 15

# Learning Rate
learning rate = 0.001

# Model parameters
# Vocab size

vocab _size = len(vocab to int)
# Output size
output size = vocab size

# Embedding Dimension
embedding dim = 250

# Hidden Dimension
hidden dim = 512

# Number of RNN Layers
n_layers = 2

# Show stats for every n number of batches
show _every n batches = 500

g gaill

Gigao Larls 3] Gs Ldlasdl UL e draall 3201 ey 580 AW AL
B e e B ple IS0 AL Slalaadl i8S A Gue Hlus e J seaxd]

3.5 oo J31 55l Gl rila>Ss



wellnnl 184 lg éuy pell dé Ul

SSeor S ghedl Asb Slatdl e 3o s cdddses Lhedes 1T & s Cal S
.Lé-é-l&: Csj&m

# create model and move to gpu if available
rnn = RNN(vocab size, output size, embedding dim, hidden dim,
n layers, dropout=0.5)
if train on gpu:
rnn.cuda ()

# defining loss and optimization functions for training
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning7rate)
criterion = nn.CrossEntropyLoss ()

# training the model
trained rnn = train rnn(rnn, batch size, optimizer, criterion,
num epochs, show every n batches)

# saving the trained model

helper.save model ('./save/trained rnn', trained rnn)
print ('Model Trained and Saved')

Training for 15 epoch(s)...

Epoch: 1/15 Loss: 6.76675343799591

Epoch: 1/15 Loss: 6.370319797515869
Epoch: 2/15 Loss: 5.788004631557256
Epoch: 2/15 Loss: 5.498991756439209
Epoch: 3/15 Loss: 5.315837315389779
Epoch: 3/15 Loss: 5.086999155521393
Epoch: 4/15 Loss: 4.981034511894964

Epoch: 4/15 Loss: 4.744471074104309
Epoch: 5/15 Loss: 4.643881075653755
Epoch: 5/15 Loss: 4.411609432220459
Epoch: 6/15 Loss: 4.350242452576826
Epoch: 6/15 Loss: 4.088176232337951
Epoch: 7/15 Loss: 4.028933911911225
Epoch: 7/15 Loss: 3.7675121421813964

Epoch: 8/15 Loss: 3.6930512214971594



Sroc aleil plariwl U 15 wglul dy el 2ilasll aygs (7

Epoch: 8/15 Loss: 3.4714884057044983
Epoch: 9/15 Loss: 3.3951571801802296
Epoch: 9/15 Loss: 3.1781059091091155
Epoch: 10/15 Loss: 3.096065091268507
Epoch: 10/15 Loss: 2.916186452627182
Epoch: 11/15 Loss: 2.8425318199600706
Epoch: 11/15 Loss: 2.6659098613262175
Epoch: 12/15 Loss: 2.577285630212931
Epoch: 12/15 Loss: 2.4270215339660646
Epoch: 13/15 Loss: 2.357348472344894
Epoch: 13/15 Loss: 2.2437951612472533
Epoch: 14/15 Loss: 2.166019320069535
Epoch: 14/15 Loss: 2.0584885563850404
Epoch: 15/15 Loss: 2.0044423047912288
Epoch: 15/15 Loss: 1.8923821833133698

Model Trained and Saved

L3 13) nTrainer_rnn ‘M\!lg L3 god o> e oMel 5, Sl oyl Al Lass d
bisay AT s Gl M ) 53 pally b il LiSlad by oll 2,5 501 puis Laio
Ly Lol Wordiid sl 58 Qlghoasss (i Al AW LIS 23 5o )b e L len)
oYU Lol Bl 3 50l Blglaass

, vocab to _int, int to vocab, token dict =

Helper.load_preprocess()
trained rnn = helper.load model ('trained rnn')

2lndJl aJgi
] 1 (BB 5L 5l W ) L] LiSlay Ll s 3021 o) 5 Uy

kﬁljnbiﬂ!
Dd>ee d}Lg}lgF43;9> uﬁb@ﬁ )b§l53¢>b &JggGJA\LQLQ;Jﬂ‘CFoJ %)aﬂ\eLﬁy
Uy cprime id sas ca 2ol ZalS G5 me Y1 B xmy UL eLil generate dls padens



wellnnl 184 lg éuy pell dé Ul

oan JsY Topk e ol s oA &1 Cal Y .predict len « o) suses ¥ b
LSO ol s n ol s i gazes o 35 BV lozl 2SI EIWI EalSIN Lol 351 pnl)

G pcdl Bg i aulis Geass
o5 - o 5 eS8l o Bmads By o eilin B ) il Gan ) 0555 U5
.yamli.com J& 453 el Sl el G355 NI Jdl g e 050 Y w8 (5

def generate(rnn, prime id, int to vocab, token dict, pad value,
predict len=100) :

Generate text using the neural network

:param decoder: The PyTorch Module that holds the trained
neural network

:param prime id: The word id to start the first prediction

:param int to vocab: Dict of word id keys to word values

:param token dict: Dict of puncuation tokens keys to puncuation
values

:param pad value: The value used to pad a sequence

:param predict len: The length of text to generate

:return: The generated text

wnn

rnn.eval ()

# create a sequence (batch size=1) with the prime id
current seq = np.full((1, sequence length), pad value)

current seq[-1][-1] = prime id
predicted = [int to vocab[prime id]]
for in range(predict len):

if train on gpu:
current seq
else:
current seq = torch.LongTensor (current seq)

torch.LongTensor (current seq) .cuda ()

# initialize the hidden state
hidden = rnn.init hidden (current seqg.size (0))

# get the output of the rnn
output, _ = rnn(current seq, hidden)

# get the next word probabilities
p = F.softmax (output, dim=1) .data
if (train_on gpu) :

p = p.cpu() # move to cpu

# use top_k sampling to get the index of the next word
top k =5

p, top i = p.topk(top k)

top i = top_ 1i.numpy () .squeeze ()

# select the likely next word index with some element of
randomness


https://www.yamli.com/

79 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

p = p.numpy () .squeeze ()
word i = np.random.choice(top i, p=p/p.sum())

# retrieve that word from the dictionary
word = int to vocab[word i]
predicted.append (word)

# the generated word becomes the next "current sequence"
and the cycle can continue

current seq = np.roll (current seq, -1, 1)

current seq[-1][-1] = word i

gen_sentences = ' '.join(predicted)

# Replace punctuation tokens
for key, token in token dict.items():

ending = ' ' if key in ['\n', '(', '"'] else "'
gen sentences = gen sentences.replace(' ' + token.lower(),
key)
gen_sentences = gen sentences.replace('\n ', '\n')
gen_sentences = gen sentences.replace('( ', ' (')

# return all the sentences
return gen sentences

62408 atlg
O:g@l@Jj\A;LﬁlJi;L§”3$ﬁaﬂ‘d}bgg&-gen lengdncmfcftwé.uaﬁ\;uuyg;jy\gb>
s3] 0 WL ol a1 Le prime word

"Gi" (I/me)

"L" (O)

"od" (We)
"8lyol" (Woman)

Aoz 33l 05 LS Tos 0 bV e oS5 cbias 505 3508 6 Lol 20T s LSy
el oo sl o Al 4R
oY gl s 05 O Jsls Lol T30

# run the cell multiple times to get different results!
gen_length = 50 # modify the length to your preference
# name for starting the script

prime word = 7 Lgf

pad word = helper.SPECIAL WORDS['PADDING']

generated script = generate(trained rnn,
vocab_to int[prime word],
int to vocab,
token dict,



oelbnll cl8allg dy ol dcll

vocab to int[pad word],
gen_ length)
print (generated script)

T s ladl 1des Lo,
LSyl gad odbg..
Sl Ylow! 4 Lii,.
DT pgd ae Wity
e S BT RE
Lgiry Syl geralag,.
I 5983 Ju¥ 1 g dY 1 s, .
Sl Ylewl oles..
12

Ode g .

s Lad Ly

prime_list = [vv l_')i", " l__:)", "0-7‘—3"! "5?_)_,0'"]

for word in prime list:
print ("Generating poem for {}".format (word))
generated script = generate(trained rnn,
vocab_ to int[word],
int to vocab,
token dict,
vocab_ to int[pad word],
gen length)
print (generated script)
print (20*'-")
Generating poem for L5l
ol —Lyas 1 deS Lol
Juiially gesylbll sY3e (s
ey o> cpla Lo..
FESUR RS NN WU VS S Wy pa
LSyls plaal Llaa,
S Gy ..ol el
Liaie o ludl LWasgg..
da LdoS g
Generating poem for Lo
Dsadlly Lag sl Gk L. .
sooby s lase b, gy
3908 O Jlas Saoinl g gdbl peg
doglre Lasl> Llwasl wid Lildaog

o L bl aldl b das 4is]
Oty Suxaw 130

CUlhs | dddly « opde « gl xS



81 \ Groo)l el plaaiwl Gild i ugluls dupoll Ailnsll 14gi (7

Generating poem for (xJ

u_)_;;_.o‘ﬁl Joo>y ..

LSLS1 Jo¥ ! 5 adbl pey.

T Gedexioe wis LT ag

4

wlay !l déyay a8l y3lg. .

L«_)'B—X—c" ..

3_)_{_&0..

pgolo) dady..

Loi S Lesds ooty SusS! oS Samgw |3l

Generating poem for 51 j
LelS 51 1 ol...
9
bl 5 ople JS Lo
L) 2 ddgudl gl
> Jelads. .
‘._)_.A_Lx_,c |J_u,\_> Liu>g9..
Y 4_15.)._)| (;L:)J._,oj
Lagldl s¥3s sYia oo
Sl wlioy Blayly Slesl ogin e¥ie (o
2liiLw Ul
on AoV Gl gall 63y o ASTIL 5 Eulans ) LY slos 0 (65 O LS
Ghally gl del s S e STy i e HLSUI oS LYl

o T S el DUy BUS pe 5 L) ) sal) e sY Alazeall OLY1 T 055G 8
U L B0 5 e 3l S 0555 8 (3 JIBLSYL . BV e collis 34y U
ol o oy s O Lde OIS RN 0f 8lzel dad «2l5 oy Lo W1 Bladst )

Sl e U

ol Ll Gl Lad Ko pa L e bty Jlaadl e sel i cxtaziasl I3 585 o sl
oo Bl A (ol ot g 1 Gl ] oz el Sy of Ll a3l
ALY glaszons Gilameoll el Ol larl) ) poad

:Janoll

https://github.com/NadimKawwa/PoeticNeuralNetworks/blob/master/generate
poem.ipynb

https://towardsdatascience.com/poetic-neural-networks-487616512



https://github.com/NadimKawwa/PoeticNeuralNetworks/blob/master/generate_poem.ipynb
https://github.com/NadimKawwa/PoeticNeuralNetworks/blob/master/generate_poem.ipynb
https://towardsdatascience.com/poetic-neural-networks-487616512

NLPg (/I fole il polaaiuwly foy & sl (1o cile grgo Eadol (8

rolcUl laaiwbl oyl Glydl o alcgihgo daiod (8
Modeling Topics from ducunll dygéUl dallcollig JUI

The Nobel Quran using Machine Learning & NLP
Natural Language &)l Lol Ldladl o sl Bme sl OF U G o
Topic gmdlsoll dxdad Loyl sl LaS 8 mey lnge o8 sl «Processing (NLP)
S| ColSTI3] § Sally ladSTI s e a0l icd) ol 2l s 4o gezee e Modeling

oaall &l Gl (s Ay UL eda Saeles o Jals cony

(S 4550 Google gl b2 16 olaall bl il o] il g Dl o B Lo
Distributed S5s ohladly oldS dejdl i’ (0s,40s  (wbos
¢4& .(2013) "representations of words and phrases and their compositionality
15 shallow Neural Network does das &5 plisels CHNCN e T30 Sl
LS (gl Ll el 33le] e L o5 ¢ o bl 5 Al Ao

unsupervised S3M Lol b ol Lol sl o Bl Giupedl M )
w2l Gl oo S LA (e dsdme LT e legudgs d-dadd learning algorithm
RIS e Gk oF eslus 4l e (S Gensim &S (s word2vec f.b‘r:wb

A 2S5 (L AT ! J] Dl e ol oo s3I
Loy LY e SIS 7 0 & 5 moVing Window i e 3136 &)l 5l pdsens
256 Slakas ol (U3 izl s (Ol S Loy el 51,55 e 2y Lol 2 2tall sl 2l
learning olall Juss s word embedding < lalSIl ezl 5451 dikises hyperparameters

.rate

Lo ol s Vol bl 350000 ) odn oSe S8 Banll =53l 5 01 50 g
LAS B me (peinn 23 ns thol 5l LS dm e T (M planad 558 ST
oy ijwﬂ PNV

RESPEWCSURCH PR VCRE B YOI UE WP JEN [ TERCC I (1 P B S PRSP [
sklp—gramﬂyqbdlﬁ.j}b Lié_jd«...ﬁz\rﬁlgfa} ‘&J“S



oelal 2144l duy poll dc Ul

Input Vector

[e]oJ&e[s]e[e[o]o]e]

Output Layer
Softmax Classifier

.Hldden Layer Probability that the word at a
Linear Neurons and; mlv hosen, nearby
;ms “abandon’

(2N @ N

nnnnnnn

bl e (s 505 wordcloud SlelS &l dellay o g (JU-s] 487 JST I ALY 3
ol Bl Gudd> LS80

JJaiodl gagodil) ‘moses’ " wgo poi:l JUo

LIS o 4o gazes iyl gl oS (L goid Wi s 2adSS "Moses” &) 3l 1,85 Lodie
Israel, ) jasd! ¥ JEall Joow o Blos Bl (35,50 JS02 La S5 05 21 (80) 855mall
$5>5 «s - 5,4 .(Noah, Merry, Lot, John, Believers, Righteous, Tribes, etc
2dS U g ) gelall eV L1 3 ST AN G o e ol sl S Ll &yl

odslall

.y

u x|
i s,

orllall pebiiie uyiS

."Moses"

“9,0.1).»0 ww' rosd
U mm Xlo R )'L W

)%ﬂ

o chLs = =l
ﬁ@ O\ |

i

SN L e 09,8805, 2L 16

Js] LSS " Moses” s o3



NLPg (/I fole il polaaiuwly foy & sl (1o cile grgo Eadol (8

JJaoJlgagoil heaven' "dia’ ol :2 JUo

4SS heaven' s a3

eguitoll U duwlw Ul aliniodl

ORb et Jlebes e

-Holy Quran o SJI Ol €5V dnad Jl dsend! fooss @

Word2vec &)l - plddenl o Sazd (gensim) 48 cols

i gl olalS L) (nltk) Ol Al Loadall £l Ddladl o gol e pazes i @
Le ol il AulST stas pusel s iy 2l 43U stop-words

sl sl ) sas wed) arabic reshapers bi-directional e <25 @

Dataframe &lesle plisenls L o5 SULI ) (pandas) o5 o

L))l (s\.b';“..wl-j embedding ‘el jsad e Ko (scikit) oS oS e
.PCA

e J8 GoldSl s L) a3l ypad (wordcloud) BLaYl cots o

o o Sladl s jhaddl = ke O b g rte e Gl prAld e L ST e

require.txt



https://www.kaggle.com/zusmani/the-holy-quran#Arabic-Original.csv
https://radimrehurek.com/gensim/
https://www.nltk.org/
https://pypi.org/project/python-bidi/
https://pypi.org/project/arabic-reshaper/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://github.com/amueller/word_cloud

85 | oelhnl l8allg éuy yoll dcl

Ul pleiig agAJl jluto @
G

Verse Tokenization Remove Stopwords Remove Harakat

Read Verses
As String Vectors

Print Wordcloud Windo»u:7
For AnyWord Model - ‘min_count=15-
Y Alpha=0.22

Visualizing Words with
Similar Context

Dimensionality
Reduction

by JUalA oy Al Glél o Guody aAau (o AUl 6.0y8 .1
# Download Arabic stop words Dataset from NLTK library
nltk.download ('stopwords') # Extract Arabic stop words

arb_stopwords = set (nltk.corpus.stopwords.words ("arabic"))#
Initialize Arabic stemmer
st = ISRIStemmer ()# Load Quran from csv into a dataframe
df = pd.read csv('data/arabic-original.csv', sep='|",
header='"infer');

Tl juoyi .2
LIl jolis s degars s veCtor axis J) BT IS oty (35 &1 JS o SalST iy (3

Al

# Tokinize words from verses and vectorize them
df['verse'] = df['verse'].str.split ()

Nnéa paoll Gicodl i alodAl 2l w@agil cilod4 @ljl .3
# Remove Arabic stop words

df['verse'] = df['verse'].map(lambda x: [w for w in x if w not in
arb stopwords])

(6unlgll) L& paJl Ul jl .4
il s I e ) el e paes A5 SHarakat SIS o) 815 Gl

# Remove harakat from the verses to simplify the corpus
df['verse'] = df['verse'].map (lambda x: re.sub ('
X))

Word2vec gig.oJ clug wujaillias .5



NLPg J I polc il plaiauly oy JAIl ly6)l o cilegrigo 8o (8

B wverses - List (6236 elements)

Type Size Value
list |4 [ pasall' ool Ll po' ]
1 list 4 [Mowllell’ oyt el |, "ansdl' ]
2 list 2 [oamall' "oyl ]
3 1ist 3 o' L 0s" L alla']
4 list 4 ['cmmiowi’ by’ , 'aami' , "alll']
5 list 3 [ psdioanll’ , "blaall’ ' Ladl']
5 list & [odlall' | 'ppule’ ,'wgasell' | 'ppale’ | 'vaosil’ |, 'blws']
7 list & e’ el ol talll' ,  pee” ]
8 list 7 ["oefzel' ,tSad' L7, L oS, telst ]
3 list 7 ['ogdan’ L edlidh' ,"loos' L '8Wall’ |, 'Ogosds’ "l
18 list 6 ['ogbas’ ' d&sUbs' L alld' L'l L, Jul' |, 'ogaedht]

s "ogied ' ]

T3sedl a5 0 85 LollS s sy LU 8,591 Bl e 10

Sl ) lgzall 50 dns LaE (58 all LS &, N1 Dl &35 Sy oM IS 3
oyl wldS U5l Verse Tokinization LY 5. 5) filtration pipeline s
S0V =LY desls ol 1 ((Remove Harakaat @IS >l d13)s <Remove Stop Words
o b g5 1 U 53 oy Coloel) 3580m 5 Y1 il LS

Ll 1 Gl il e S5 8 Y chyperparameters 2Ll Slokasdl & 20 g5y
o ST labaadl vl JEl 5 S3) Calanie Jlaasns L s ) Sladaall Juail ol oy
g Jolas asadl o oy gl cmin count=15 3 e < da\ LY (G55l sel 3
o3 ) Sl jaall e LB ST 803 6,k 353,5 Y 15 s Wa)lSS sus Ji 1 oldS

# You can filter for one surah too if you want!

verses
model
alpha=0.22)

df['verse'].values.tolist ()# train the model
Word2Vec (verses, min count=15, window=7, workers=8,

sl



oellnnl 84 g éuy pell dé U

. v ol 23lodl jgun B4

PCA Goks o LS lgaes ) s

S sl p g I LS e 4z 203 e 031350 05 (601 3 gl (5 50w O o
LS J] Bl s drl sl G e 0 31 LIS (T 88 a5 lgznall a3 ) 3ad (o Sa
(549x100) ozl Bsiae oo Ll SV B )l b (oY
255 PCA Jos sbo¥I i £l U3 i e . model[model. wv.vocab]
e el Jies i) PCA coabend (iS Loall 3801 e JUII Calmidl Sl
bW L8 Ll e 1 BlehasT ol jaall ) pms e oS3l 2 (549x2) ) (549x100)

oSl e sl

# fit a 2d PCA model to the vectors
X = model [model.wv.vocab]
pca = PCA(n components=2)
result = pca.fit transform(X)# create a scatter plot of the
projection
plt.scatter(result[:, 0], result[:, 1])
words = list (model.wv.vocab)# Pass list of words as an argument
for i, word in enumerate (words) :

reshaped text = arabic reshaper.reshape (word)

artext = get display(reshaped text)

plt.annotate (artext, xy=(result([i, 0], result[i, 1]))
plt.show ()

Github (9 294l
https://github.com/aelbuni/quran-nlp

:Janoll

https://aelbuni.medium.com/modeling-topics-in-qguran-using-machine-learning-
nlp-b88ca23fb44d



https://github.com/aelbuni/quran-nlp
https://aelbuni.medium.com/modeling-topics-in-quran-using-machine-learning-nlp-b88ca23fb44d
https://aelbuni.medium.com/modeling-topics-in-quran-using-machine-learning-nlp-b88ca23fb44d

Gty JUAl bl degano o8 6w el ardlgol wiin (9

Jual by dcgono (& dwycll audlgoll wiini (9
Arabic Topic Classification On The (wjpuua

Hespress News Dataset

ST a5 el Gial Il 45,00l Hespress s pd &5 Jow Jalexa.com’ #3 50 Gis
Sl e Cagy 365 6 Jom 3l el byl s 53U Gk 350

grordl e dae &)l Al 11 e 48 gaza e 5)Le Hespress ol de goze
LT e bl (385 (oo Aol IS0 e ol (padbnnnndl |3 (0 Bl e Gl T 3005
Yl i) oda SULIN de sezes plisnl Sy (Facebook s )séier Slles]
Sy medl ol gL ABWI ol s DLl ods U585 ) goen oS I L)LY
Ll VM e SULN A sazes Jramd

el s e JYN o datdl J g B madl (o LA o) U1 o5t dgor po Uliod] o
il e Gasell g Loy cregression MoVl classification «aiwasdl o 8, sa L
ol dnzall ol sl e B0 f.L"aL.e « U3 xa5 . cross validation bl

"IE & |Ia-o .
Lo Lolsdl Sliancdly SV e JS e by 2old) LI ds gazes (6505 Lol
3 SY S e Lol s il G il ) L0 e Jalah ol S
WS sl b e gLl sy Wlie S s Ll pmiend (VST Y1 S,

o b g0 11 L) ¢ sameadl G J) il JEall § 35 500 50301 5 Liota Ll

.Tamazight (A Moroccan Language) (&. s 4) i SLYL e

.Sport (Sport) (45L,) 4oL, e

-Societe (Society) (pozall) ozzall @

Regions (Regions) (Gblal) sbladl e

.Politique (Politics) (dwludl) dulidl o

.Orbites (World news) (Wl S obladl e

.Medias (News from local newspapers) (idowodl Camell 1o JIES)) SNl o

Marocains Du Monde (Moroccans of the (Wl &)le) Sl 45k @
.world)


https://www.kaggle.com/tariqmassaoudi/hespress?source=post_page-----7adceef12bed--------------------------------

ml oellnnl 84 g éuy pell dé U

.Faits Divers (Miscellaneous) (desoe) j,uls b o
.Economie (Economy) (sLzz3Yl) sLa3Nl
.Art Et Culture (Art and culture) (Blly -all) Bladly 2l e

dusliiA L Ul obul JudAi
UL &dleed pandass UL e seaborn pudeis

tbL ey T

O e § 5 g0 bl Jo cale JS' (g pon (diides Slils GobL) dﬁ&é‘y s
cﬁu\ Wﬁ@*b‘fd‘)‘ﬁt:b

import pandas as pd

stories=pd.DataFrame ()
topics["tamazight", "sport", "societe","regions", "politique", "orbites
","medias", "marocains-du-monde", "faits-divers", "economie", "art-et-
culture"]for topic in topics:

stories=pd.concat ([stories,pd.read csv("stories "+topic+".csv")])st
ories.drop (columns=["Unnamed: 0"],axis=1,inplace=True)

r UL e e U3 sy 51

stories.sample (5)

i tithe dale author story topic
580 812B200055b11ebA1eBA46e65c89 Tea A0SRt atssun e sisoa s orbiies

911 053a3a1804e811ebb47364660090 1ea SR AL Mpowaga TSRt societe

SUSE s e e A e - 2020 5 17 = . L B IV N e e o 5 6 Roainet:
193 0o2ic51B04el 1ebatcd64Be6908aTen e P > monde
856 0SaD1a2e05521 Tebb27aBd5e6999 1ea e on R S T e
708 9220200e055h1 1ebB780646e60089 1 ea G20200L 20 SRR b I L LR R arbites

01:24 el

il By e pares 0 Ks kos]
E gl Sy Ll s § gongae (o Dliall ods Jeskesl 5 Ll 0 (55 0f ey

Lol OIS13] Y Gt B e My g 50 JS Glad) Ganadll s n G Uses oY)
b g i e 30 STl bl L) of dimbalanced dataset &5l 50 6 ULy ds sazes
S s Ly l) OS] el Jons ()5 biased (oo bord god 055 (5 5V ol podl o
ol 43T 351,331 51 under sampling bl d-1 &b ks o &Ladl J o) T 0

Lalis U e ey Jeo el Jstes )6 coversampling
import seaborn as sns

storiesByTopic=stories.groupby (by="topic") .count () ["story"]
sns.barplot (x=storiesByTopic.index, y=storiesByTopic)



e i bl degoas s anscl adlsal aiini 9 (G

100

ateet.culture economie foitsdivers  marocains.duonde  medias ortites: pitique

t_}.‘é}d‘?«:u@«:ﬁ| sae

regions. port Tamazight

Lolas ) gm0 Luld SULI e gazens of e JSU Ha3 1000 (o o b bl 0 (5 0f s

bl @A i

o Lol data cleaning SULN Cales dlas oSt . o2l ol SUL R
ks

S LSS st " e olldSUl [ 2x :Removing Stop Words cadg il cilod4 dJl I
L3l 5w - al) Lo ol iy O ey ime (61 05 V5 T ol o sotl) n AU
W plall dlall s SladSUl e Jaib 5820 Lard gad #Lendls noise sl saall L5 )
S el A1 LS e D35 VU] o oy 555 20315 i

.Github e &b lgadsenl ol (i gl oldsaast

from nltk.tokenize import word tokenizefilel =
open ('stopwordsarabic.txt', 'r', encoding='utf-8")
stopwords_arabic =
filel.read() .splitlines ()+[" il ", " 2a )", "o zall"]def
removeStopWords (text, stopwords) :

text tokens = word tokenize (text)

return " ".join([word for word in text tokens if not word in
stopwords])

‘(.TSJ:J\ ol AL p e s -~ :Removing Punctuation foud jUl cslollc 6Jlj|
Regex s coddenl i

from nltk.tokenize import RegexpTokenizer
def removePunctuation (text) :

tokenizer = RegexpTokenizer (r'\w+')
return " ".join(tokenizer.tokenize (text))


https://github.com/mohataher/arabic-stop-words/blob/master/list.txt

91 | oelhnl l8allg éuy yoll dcl

WordCloud rouu

DataSet $52 5 o)l javaill praz (o Word Cloud g s p st ez poll ans sians Use
"WordCloud " § gl 450 plusenly Lo

B o3 Lo dygall B pmed iyl & 250U B3LAYI skl an Mla (UL L3I 3
Lol 1

import arabic reshaper
from bidi.algorithm import get display
import matplotlib.pyplot as plt
$matplotlib inlinedef
preprocessText (text, stopwords, wordcloud=False) :
noStop=removeStopWords (text, stopwords)
noPunctuation=removePunctuation (noStop)
if wordcloud:
text=arabic reshaper.reshape (noPunctuation)
text=get display(text)
return text

return
noPunctuationdrawWordcloud (stories.story, stopwords arabic)
. - thun 3Ll
5| —

gt u-“-:&-’.)

004.]9.3.”0 44_!_\./.3“ 6);3',1”

i | 1
Lall e §§-1>59
iy ee sl eeed g

—\a»'i“uoé'g9 d

JESRI )L>| UYLMJ SIS Ll

re e .;,f‘l __ “ =
= ) I @ | B ¢
Yl ::!‘;y %“ <
s ’2020 "o Lidlig : I
M}Sl” 3 u u“‘ >”<u|.u P -, 4 lazaS1 D

o) USRS 5 LB i Ll Yl e (g g o.uul.»u\swwg‘ﬂj]a
J,S\H‘..w\!lj.aj M}u.)ﬁq.“dkm)wghj %)LAY\ L@\Juj.a)ﬂww(bj);
Ao Sl s e Sl s (o prall s ol Ll 525 o hedl Bnd


https://amueller.github.io/word_cloud/auto_examples/arabic.html

Gty JUAl bl degano o8 6w el ardlgol wiin (9

Ul jrodl duwaia
Lardles s |51 adl g Lestan Vs ol ¥alee Laja s dr JYI (bl 230
SV e all CassSS Les (S pLal) Badaie G b Sla 0yl I el fogs ) b

GlodAJl2ac
ods b ey cio IS5 (LeleSTh aadll e pors (e EalS Jroy 3508 JS (R Loy Vi
ol Gaedsl 4 ks (s | SI 2 250

TF-IDF
¢y 25 < 'Term Frequency Inverse Document Frequency” J| TF-IDF
E5date Sl Geotods 2 AL DLl ol s U1 e )l Gam i ST L

! o2l 2151 oy VLl Jame 63 TF-IDF pasens G

from sklearn.feature extraction.text import TfidfVectorizer#Clean
the stories

stories["storyClean"]=stories["story"].apply(lambda s:
preprocessText (s, stopwords arabic)) #Vectorize the storiesvectorizer
= TfidfVectorizer ()

X = vectorizer.fit transform(stories["storyClean"])

y=stories.topic

aiodl

) 3l sl
.Random Forest &5l siall LI @
-Logistic Regression sl =<yl @
SGDClassifier il sadl SleiNl )hcll Citnae @
.Multinomial Naive Bayes s sd>u)l sdxe 5Ll

doouall Wl3eall L g accuracy Bl plduid s 3 500 JS N oo UL ki p i
sl Gl bassinnl 85 2T s e Jually bpt) GulieS UL Bl b s
L o s o5 Lz fOIdS ool 5 ¢ cross validation

from sklearn.model selection import train test split
from sklearn.metrics import accuracy score

from sklearn.model selection import cross val score
import numpy as np

from sklearn.metrics import classification report

def testModel (model, X, vy):

X train, X test, y train, y test = train test split(X, vy,



oelnnl c184llg dy il de Ul

test size=0.2, random state=42)

model.fit (X train,y train)

modelName = type (model). name
pred=model.predict (X test)

print (modelName)

print (classification report(y test,model.predict (X test)))
score=np.mean (cross val score (model, X, y, cv=5))

return model, {"model" :modelName, "score" :score}

wore

LogistieRegression MultinomiaiNg SGDCIassifier
model

CiLa;Jl B>
%87 B SDGClassifier s Lol 73505 Joil
2agoll LLud]
e o AU (Sdou u%&,u;ﬁﬁz,oij Lyes hos #3500 o Lo of s 0V
ol
Clardyod g Sl pdlpedl AL 0
faabseal e b 5ol 32l 3130 SV Ll Al o

zis0 JasY classification report Ciiatll )5 e Gl LiSay oY1 ALSU £l
Lo



G e JUAl GUly degono o dusell ardlgoll Giin (9 _

SGDClassifier
precision recall fl-score  support
art-et-culture 9.%8 9.93 9.92 213
economie 9.81 8.91 8.86 194
faits-divers 8.95 8.95 .95 198
marocains-du-monde 9.85 8.91 0.88 178
medias 9.96 @.93 @.94 21@
orbites 9.78 @.69 @.73 204
politique 9.80 8.84 08.82 197
regions 2.84 .80 .82 214
societe 8.73 8.7 8.71 184
sport 8.99 8.98 0.99 282
tamazight 8.97 0.98 08.97 286
accuracy 2.88 2200
macro avg 9.87 2.87 2.87 2200
weighted avg 8.87 .88 .87 22060

SGDClassifier ainaidl 5,4
bt oo ST S 7o AW Ale 8., "Tamazight's "Medias's "Art’s "Sport” 2 55 5
s ol o e 0 Wy (Society) "societe’s «(world news)) "orbites" &
Blusls Lagas 2T 5550l
15V pltel Lo ¢ s sl oD ke Lol ptini (SBI1 I3l e 220
g_ij~l; (LQAJ\ LJ*?~MJ‘ L}z:w: "ELI5" g) b ‘LUS:A C:?*}QJ L}S’ch_éLaJS:J‘ 4~0Jh\9 LruLulof;

yﬁn:g’:gs“ g y=economie top features y=faits-divers top features op f;:;:;mn& y=medias top features y=orbites top features
Weight” re Weight” Weight” _Feature Weight” re Weight” _Feature
+4.092 +4.244 +3.792 = +5.475 sdl
+3.266 +3.008 +3.070 +5.439
+3.128 +3.082 +3.086 +4.865
+3036 +2.989 +2596 +4.200
+2.875 +2922 +2.453 +3279 5
<2653 +2655 2434 +3.008 S3744 Sy
+2535 2371 ¢ +2405 +2.991 +3.226
+2.535 +2173 s +2.357 +2893 il.w +3.211
+2.453 42133 & +2.320 +2.690 ’.).d’ +3.131 il
+2.451 #2112 p +2.153 +2.626 +3.106 el
.. 45651 more positive .. .. 22905 more positive .. . 11755 more posmve .. 31792 more pusmve .. 39685 more positive .. 566&71717/5 positive ..
131031 more neganve oF 7537/ more negalws 76-492/ ‘more negam/e 744890 more nega/:vs o) e 736997 more negallue 3 IZLZZ?? more negatwe E
1013 A7 LS 0864 i 0920 Ao
-1.021 21205 deySall D 080 iyl ~D 999 ¥
-1.071 -1.558 o -1.176 -1.007
-1.085 ¥ -1.729 -1.196 1213
-1089 - -1.802 -1.409 -1.771
y=politique top features y=regions top features y=societe top features y=sport fop features y=tamazight top features
1 Weight” _Feature Weight” _Feature Weight”> Feature Weight” _Feature Weight”
+3.852 iegall +2.817 ¥ +3.866 A= +6216  B=h +12.877 o
+3.584 +2.686 +2617 = +5.257 A& +6.988
+3.389 +2.458 +2.527 f +4430 & +3.683
+3.201 +2.452 +2.482 +3.854 +2.165
+2.900 +2.442 +2.112 +3.773 +2.054
+2.841 +2.363 +21059 +3.465 +1.881
+2.734 +2.204 +2001 +3.091 +1.830
+2.647 +2.145 +1.827 +3.084 +1.805
+2.484 +2.088 > +1.822 +2.662 +1.634
+2.437 ol +1.887 +1.815 ¥ +2.591 > +1.578
.. 23056 more positive ... ... 17857 more positive ... ... 28213 more positive ... ... 18357 mare positive ... . 38807 more 1 pos.'ifve .
. 153626 more neganve . _ 158025 more negarrve _ 130468 more negative . . 160315 more negative .. )‘3787.5 more negative ..
0777 -1.452 -1055 B 0819  <Ld 0801 s
-0.802 -1.482 -1.082 i -0.829 0807 b
-0.805 -1618 -1.116 -0.947 -0.810
-0.869 -2.376 -1.216 -1.122 -1.047
-2.033 -2.956 -1.473 -1.329 -1.839




oellnnl 84 g éuy pell dé U

3 il JEadl Jow e § 50l 500 o 531555 Eedlate SIS im0l (55 O LeSlay
'Book" "Culture” "Film" "Artist" : g &us | LSl 016 S Art’

aliiiuw
oo R R o padl it ol ) Ze33U) St ey Aliall oda (Bled 3
B Gib o LBs oo BISGL I Y 23 oy miladd) s ] UL GLESE

B lodasd!

:Janoll
https://medium.com/towards-data-science/arabic-topic-classification-on-the-
hespress-news-dataset-7adceefl2bed



https://medium.com/towards-data-science/arabic-topic-classification-on-the-hespress-news-dataset-7adceef12bed
https://medium.com/towards-data-science/arabic-topic-classification-on-the-hespress-news-dataset-7adceef12bed

ducnl dug e Ul dale oJl polariawl 6y o)l (il @ivao (10 _

dugt Ul dalleodl plaaiwl dwupcll id)l wiini (10

Arabic books classification using NLP ducuinll

bl ol oYl 8T a1 Natural Language Processing daall L sl dolao]! A
Machine Learning L;Y\ ) 1Bl e 25 dilate o 5l data science UL e
o2 S goen pn prally Dlaglaadl sl ga e 5 A5 linguistics b sl

1 3Ll Blidandl o dodall (NLP) dmall & galll Zaedlned ] ds

(Jbad! Jow e Deep Learning Geondl olacll) text translation jo el dax 5 o

spell checker sl 33 o

-automatic summary of content  g>ell SGL jaslall @

-vocal synthesis 5 sall Sl o

.text classification el Ciias @

.opinion / feeling analysis ;5221 / 1) o

SUl sl e next word prediction LUl LI, 300l o

o2l o extracting named entities slawell QUL =) 5enl o

oSy ol e SN J] il a (o G o donlall & 2l ol 05535

e ol a5 J) U 55k a5 :Pre-processing ool Galleodl .1
* FVIRCE W

oda L5 - Sas :Representation of the text as a vector anioeA yaill Juiod .2
(o Cal bl . T-IdF 4 Bag of Words «ldSJl dui> wlais plasnly 8 glasedl
Geond) (el I s (eppamiatll) gl s

83l oda Jl> sa 5 classification Ul .3

sl W dm g s Ggd 2V dondall & gall) ddlaall plgs o Wliodl ol ol
i | UL ol

wblllacgono
Kaggle: bl ie gazen Sl JUAe

<https://www.kaggle.com/dareenalharthi/jamalon-arabic-books-dataset



kaggle:%20https://www.kaggle.com/dareenalharthi/jamalon-arabic-books-dataset
kaggle:%20https://www.kaggle.com/dareenalharthi/jamalon-arabic-books-dataset

97 ‘ oelinnl £144llg dy yoll &E LI

oo p sty Oles Joje 5 2Nl e B 52ell CoSUl md e 5o (Uske 1y 41) Jamalon
oSz o by ol SUL e poren (6505 o sV 3,20 sloil o (361,301 J) oS0
Al 2L 522l vgilo] Civad J] Brbw 0 0 she Lgond )

S ol G s oy Wows S o) 5 pnal s s UL Bnad) Gl T
ol )

Publication

Title Author Description Pages o Publisher Cover Category Subcategory Price
0 uaﬂ\..bau-"ﬁ Gfim Ulnsgleall Say el _.ss::.:l.‘.w a0 008 mm s J:T: S 1500
1 R o) i LSS sl g B "N 98 j;'"’ 176 o (A ,:.:u )jl‘: e e J:T,l Yol 1875
2 ) ) e hail ifeal dean lasiay 1 pudleyl hu‘.'&—“j:"‘ 168 1906 =4I “ﬁ-u;il’i—fjl‘: e J:t o 1875
3 R e e ST e 2016 D S .}:‘Jt Y 45.00
4 Sty G gkl “"Mi‘m‘w“w‘ﬁ 34 2004 e "";j"_jl‘: I d:::\[: eyl 150
5 e ol RN iy o ks "a Y s 5 :;"u 144 0 Sl el ll) .:-j# ;“‘: (gle G J::J?: YoM 18,75
6 "’Mﬁ)‘jﬂﬁ PR “’Z"J"""""‘“ﬂ“‘”‘i‘b’? 512 2008 ,-.m,uu.ugu:;t EEFTE J:;t SO 45,00

s UL e pares Bt I Sl inall e dole 5050

oo e Al Lole sazen L2l i (Ut ) LSIST 0 Sy (10 (4443) 5o SULII ST
4w test Loy train ool

G001

500 1

400 1

300 1

200 1

100 1

il

Lalssdly fualll

Jlally oVl

aaluslly sl 1
weililly gl

asa Ml Sl
PR PP | AL |
aaulally eslall
Jalally 0¥l
AAeyly asloall
ol Sially ol

Jlac¥ly slaisyl



ducnl dug e Ul dale oJl polariawl 6y o)l (il @ivao (10 _

A S O e b ol jiass OF p Legarl s 0f bl 08 1 JSLadl ST e sus
S 85kt o Eod) D)l 8 s djgw 13U el il g :\U;u\ sUasYl e 2SI Sla
u;w(,._.uwl

wblu aounoll dalleoll

L3y e %80 51 70 I Joa Lo UL Cadiss 3 a2 (Lo e lago 1052 1 g
o S L) & S il LiateS) LT taidl s oluo Y1 Sam sel i Bl (e g ptiad £l
:q“%‘wg\ﬁuM\u@'“f(’wM‘

.Grammar and vocabulary errors <is aalls & sl sUasYl o

.Duplicate books and descriptions <L Ny s, Sl sl e

oy categories wlainas 51 Books without descriptions Lo 1 Ok S e
ROIEY

Iz 5T DY L) dpdows s UL BNaN Ldy d Jdns 35 58 b s » 05
Cprall WL ki psi ISO e 5o 83 55kall SULAN o Dl adin Grmbiall o2l
PRI

o3 A ldle AL i 1 (oo i 4] Ol Ball Cadas Beadl s W18 sl
BV AL el Gog el G B g3y gl LS Sledle

Blis Oled o 397 30 b Lgndim o 51 G g b LIS Laom 0f o s (6 31 AlSCiie 2lin
S SV 8 Ll UL de e Blerlpsl o3 BbL oS s 5T 3 T el
dl.é@ﬁé?ﬁ&‘&b@\&bwﬁr‘b@b@&@&wwgzwUth\?}
P SIL 83 52 sl ) LIS

Todlaall L sy 0V LSy s D) Biediadl GlosVl e o8 IS8 01 Gl sVl Cilss
o] A

@8g il culodAs dljlg jro Ul
Lol (Sl e Al J el Lo J) Tokenization (e ,d) 203 bSsdl ans
L Was doge LIS dodoss 0 s s AalS oS5 IS Jon 8, Sl &-individual tokens
A s s b SllS an I stopwords i gl LS DI5| & sy LSy oY
) DS e S s ST e dpamdl Jol o ilamdl ine iy 8 3] s



ml oellnnl 84 g éuy pell dé U

S DL bods ) 85 LIS 2L e Ol sy e okls oy L3 oy o)
RSP CN]
o LAl oLl @i
oS oLl i o T 18 150ke Ly o) Aol &y godl ol shaadly 2087 IS Loy JrT o
A dres 8 q.;kféu\ g &u pall de sazead) pos tagging
Sl bl g2 JB-2Y1 Stanford Tagger g e IS pludl Ciinan) class &3 xo Lhos Rjees|
LeSall B> iy - Stanford Sldke 5 2 ils ] slealls il SULy e a8 o5 25 505
ALl e cﬁl:.ﬂ\ <s§5 790

"15,/VBD"),

(Il, Ia'__uu/NNl),
(Il; IP)LMJi/NNI)J
(II, IJ.u.\_l_w/NNI),
('*, *1,,/VBD'),
(II, Ié__uu/NNl),
(11, 15/,
(”J IJ—>*_)—‘/NN|)1
(II, 'E_;L?/NN'),
("', "edw(/NN'),
(”J IJH-E/NNI)J
(II, IP)Lmi/NNI),
(Ill IE,JJ/NN )r

(II, I_}.m_i_c/NNl),
(Ill Id—.’ﬁ-‘h—?/NN )r
(II' IP*_}_’?/NNI),
("', '@s15>/NN"),
(II, Ié__iju/NNl),
("', "Leiss/NN'),
("', 'Laass/33Y),

.81l 3 yo Jdi Le §gind (Ul clodAdl dljlg jaa

Gl e Ld> & "LightStemming' ol Lells we Lles (EalS) Jool J] 3l
A1) - word’s stem £edSIl ool e Jgmasdl ol oo Ll b 5 1 Lgd o g8 ol o o ol
e 5o Aol (B0 3 e ST e o I LIS e Jais DI o L b
Ll Ll bl BT me 13 (6,30 LS STl Ll bad i 5 LS Lef 2 3 e J8T
a9 ynioll oyl

oz L8 M e by Aol WUL de pazes Joutliers £ el o)) LS L5l A
Josoey el Lol SULA 8 anadl )l e asSI GBI mdbdl b ool (el e
auto-encoder Neural Sl je 2l 013 dnas 880 Ladsal o dady e J) el



el éyge Ul alleodl pladiwl éuy poll LA @ino (10 100

Slghsdl o Lad ) Jarll [asdls LiSlay 3508 Lgaldiely SN gpacll Network
L) ol
-Vector Space Model «xcwall sLadll #3505 J] yo gl Josos -1
(S o 2 013 Lanll BN oy -2
o 4l o meax 54 p 8 Eskesdl oda 3 Similarity measure ol Wl -3
e 2 k) WK ) Sless wlme (S cosine similarity elal
Ablad! UL bl e "IWCEIN| PN (..”.B_H Y- CWPN (XNEN] c.b':m.dl
(AT J8ig [jI3AT Al alodAdl) 648 JAJ ciled Al JIpAT
535 goll 5t 2SI tokens 3 o )l /words 2alS'50 JI e gl L5l bl GoLasn
B Sl )1 b

Most Frequent Words used in books description

4000
3000

2000

1000
D.JI.IIIIIII“IIIII..I.II.I..I.“.I.."

IO U I RIS Y

oS o G 5o 2SS o "SI 0T s 55 0 Lo o3y 0] ol 1
il oda e



101 | oelinall 2184llg du pell Gé L

o33 S o LSS BV 50 /A0S 500 J1 2 yme SNy ¢ oSl Jind B 03 (M5
Sl

Least Frequent Words used in books description

R O B T TR R P R Rl Sl

¥

Al Gl G e T L d LSl e 0 2 g0 (55 O ey codhel Ll o J1
(185 Y LS ldSIl el JSD15) 6, 3 U

oAl dulaw
5 S Gl sl Bhlasel 1SV Lt M LSV By ST 5 5e Lt s

Il ol Buuaia
(o feature vectors Sl wlezme Jl pbdl el Wlly Jiposs o Bslasdl oda 3
o B el YN iy p st 85 g gl SULIN o pomes plibenaly S Sl oL
Ly Lol ULl de gazes oo dlall b Sl el e Jsaanddl Jo]

TF- G5 0,555 oS e sameally 223 1 Gpelavaol) &) Lan¥) TF-IDF iy Jr3
normalized Term Frequency lael mhhaaall 555 ey VI (e e IDF



el éyge Ul alleodl pladiwl éuy poll LA @ino (10 102

{Inverse Document Frequency (IDF) Lf.&;d\ Lol 55 5 4a dU\ cUﬁoA-‘)J‘j «(TH
Sl (a3 0 e Ui i pazmall Bliitnadl 5 25 S5 e w12 s Ul
el ellall b selay Sl
Golbdhadl sue Juz)) [ (Lol gt mhaadl j5eb ol sae) = TE(Y) o
(Kiwad!
CM\ e Sges LF*J! Olded! sde [ woldawa]! sue %;L«e-l)IDF(t) = log_e ]
(t

words <llSI) JB-sY jss) e dakizes Olgis Jo TE-IDF olge eli] S

(n-grams n <l ,>Jly characters \_é)};‘y‘j
Aakses Sl Jpdlanas SO tf-idf s J2e3 & 5220 :Word Level TF-IDF

Ol phe B yaaallods Jrod b N wbdlias (o pse 8 55k :N-gram Level TF-IDF
N-grams :, tf-idf

dn-grams <>l (g gued tf-1df by S @ si2s :Character Level TF-IDF
A5 gazeall

&3g.0J Ly

G W3L23] o5 1 ol pliiinly Gl 35 o el it U] 35,531 3 e
S 3 5l o) Lol S 31 N1 ool 3L Gzl Ll o 2ol Slin
0 g LI Gl olimall ki

.Naive Bayes Classifier 5L ol caves o
Linear Classifier ksl izl o

.Support Vector Machine ieelll &gzl U7 @
-Random forest mode &3l poall LI #3505 @
-Boosting Models =l =3l @

T35l o) Lgaltsel S bdelus dls o I DI ool e bl Jali Uyes
Olied) Sl s Copddl ObLy wlend s Copdddl GULY Old) 4y civaedl i 50
AU Er > Ol 23500l o)l o (oMdall ol plasenls M-S el UL



oellnnl 84 g éuy pell dé U

Huw
02! & Bayes’ Theorem b &, e donad Cinas 4285 » Naive Bayes L &b
d B Y 2| Gk 550 3525 Of Naive Bayes cinas b 5t - oiinall o JELY
kil Lol e ma sklearn Goad phisenls 5l <l o3 gas dodiny Lad A RESES O FYES

B> el lowd 21 85nedl B pmad 850 SO Lard pal 885 o 500 AL Uges

from sklearn import naive_bayes
from sklearn import metrics
# Naive Bayes on Count Vectors

accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_count, train_y, xtest_count)
print(“NB, Count Vectors: ", accuracy)

# Naive Bayes on Word Level TF IDF Vectors

accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf, train_y, xtest_tfidf)
print("NB, WordLevel TF-IDF: ", accuracy)

# Naive Bayes on Ngram Level TF IDF Vectors
accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram, train_y, xtest_tfidf_ngram)
print(“NB, N-Gram Vectors: ", accuracy)

# Naive Bayes on Character Level TF IDF Vectors
accuracy = train_model(naive_bayes.MultinomialNB(), xtrain_tfidf_ngram_chars, train_y, xtest_tfidf_ngram_chars)
print(“NB, CharLevel Vectors: ", accuracy)

NB, Count Vectors: ©.5859728506787331

NB, WordLevel TF-IDF: 0.5781357466063348
NB, N-Gram Vectors: ©.4242081447963801
NB, CharLevel Vectors: ©.5361990950226244

Al binoell
categorical (g gl & eredl (e 831 Logistic regression s 54l BSENY | o
b o independent variables Al o xzedl o ST 5T a5 5 dependent variable

Jogistic/sigmoid function Livw/dce o dls el CENVCER IR

from sklearn import linear_model

# Linear Classifier on Count Vectors

accuracy = train_model{linear_model.LogisticRegression(), xtrain_count, train_y, xtest_count)
print(“LR, Count Vectors: ", accuracy)

# Linear Classifier on Word Level TF IDF Vectors
accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf, train_y, xtest_tfidf)
print("LR, WordLevel TF-IDF: ", accuracy)

# Linear Classifier on Ngram Level TF IDF Vectors
accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf_ngram, train_y, xtest_tfidf_ngram)
print("LR, N-Gram Vectors: ", accuracy)

# Linear Classifier on Character Level TF IDF Vectors
accuracy = train_model(linear_model.LogisticRegression(), xtrain_tfidf_ngram_chars, train_y, xtest_tfidf_ngram_cha
print("LR, CharLevel Vectors: ", accuracy)

/Users/lamiaeaitmbirik/opt/anaconda3/1lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarni
ng: Default solver will be changed to 'lbfgs' in @.22. Specify a solver to silence this warning.

FutureWarning)
/Users/lamiaeaitmbirik/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarni
ng: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option te silence this warning.

“this warning.", FutureWarning)

LR, Count Vectors: ©.5995475113122172
LR, WordLevel TF-IDF: ©.6018099547511312
LR, N-Gram Vectors: 0.4117647058823529
LR, CharLevel Vectors: @.581447963800905



el éyge Ul alleodl pladiwl éuy poll LA @ino (10 104

SVM gagoJ

FPOU P JTH-"-’ sy, ¢ e 8,Le Support Vector Machine (SVM)iesl ! gzl &7
Jadl 3 atdl o 3 oS ST Citatll Sldos e JSU Lgalasinal Sy 1y S0
) oy ks s P L e

from sklearn.linear_model import SGDClassifier
sgd = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', S6DClassifier(loss='hinge', penalty='12"',alpha=le-3, random_state=42, max_iter=5, tol=None
1
sgd. fit(X_train, y_train)
y_pred = sgd.predict(X_test)
print(‘'accuracy %s' % accuracy_score(y_pred, y_test))

accuracy ©.5995475113122172
éuilguire )l dulél @ Agod
g3l dolsy e gaxall #3Las (0 ¢ 55 » Random Forest models 431 sl L1 50
.tree based model & 2=2Jl e da5lal| CSL«:J\ bile yos i (..@_:l .bagging models .

from sklearn import ensemble
from sklearn.ensemble import RandomForestRegressor

# RF on Count Vectors
accuracy = train_model(ensemble.RandomForestClassifier(), xtrain_count, train_y, xtest_count)
print ("RF, Count Vectors: ", accuracy)

# RF on Word Level TF IDF Vectors
accuracy = train_model(ensemble.RandomForestClassifier(), xtrain_tfidf, train_y, xtest_tfidf)
print ("RF, WordLevel TF-IDF: ", accuracy)

/Users/lamiaeaitmbirik/opt/anaconda3/1ib/python3.7/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: Th
e default value of n_estimators will change from 10 in version 0.20 to 160 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

RF, Count Vectors: ©.502262443438914

/Users/lamiaeaitmbirik/opt/anaconda3/lib/python3.7/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: Th
e default value of n_estimators will change from 1@ in version 0.20 to 160 in 0.22.
"10 in version @0.20 to 108 in @8.22.", FutureWarning)

RF, WordLevel TF-IDF: @.5101809954751131
Hjcll gagoJ
AWl 3Ll o o5 a5 degerall 3L 0 3T 5 Boosting models o5l -3l s
(bias ol Jdad VI el e gesead Loy L))l o 5)Le Boosting 6=l e
Aol Sl 55 n Ao gozns (BN wslidl (Al variance bl SIS RPN REN]
raan & e Ciadll dhaidl iy o b il nedane J slinddl padanall J g 1 Y
el e ol Sy UV Citad wSay) kol el b il (S8 by
-(random guessing 5! 5!



105 | oelinall 2184llg du pell Gé L

import xgboost
from sklearn import metrics

# Extereme Gradient Boosting on Count Vectors
accuracy = train_model(xgboost.XGBClassifier(), xtrain_count.tocsc(), train_y, xtest_count.tocsc(})
print ("Xgb, Count Vectors: ", accuracy)

# Extereme Gradient Boosting on Word Level TF IDF Vectors
accuracy = train_model(xgboost.XGBClassifier(), xtrain_tfidf.tocsc(), train_y, xtest_tfidf.tocsc()})
print ("Xgh, WordLevel TF-IDF: ", accuracy)

# Extereme Gradient Boosting on Character Level TF IDF Vectors
accuracy = train_model(xgboost.XGBClassifier(), xtrain_tfidf_ngram_chars.tocsc(), train_y, xtest_tfidf_ngram_chars.
print ("Xgb, CharLevel Vectors: ", accuracy)

Xgb, Count Vectors: ©.5163104611923509
Xgb, WordLevel TF-IDF: ©.5039370078740157
Xgb, CharLevel Vectors: 0.5646794158731158

max review length = 50 # The handful tweet are longer than 50 tokens
X train = sequence.pad sequences (X train, maxlen=max review length)
X test = sequence.pad sequences (X test, maxlen=max review length)

LSTM
gUasl JI zlous z3sel 1 &ylkedl functions Jisuls classes <l sl mnly Tl
ol O 23 potdl s B datl] Jphall iy Lgmna 0555 ooy Loty JU-5YT DS
o5 S seall o n Jshll ity o SV 0B I (Dl glae 6T oo Y & il

Keras goluadl el Y s J bl Olgans o glas

from keras.preprocessing.sequence import

pad sequencesX=tokenizer.texts to sequences (df['Description2 Parsed
13 unlist'].values)

X = pad sequences (X, maxlen=MAX SEQUENCE LENGTH)

.numbers rLB)T Il categorical categories & gl bl s JI oY gl
Y = pd.get dummies (df['Category']) .values
S KR RNl PO

X train, X test, Y train, Y test = train test split(X,Y, test size
= 0.10, random state = 42)

L oL LSTM 3 5 fit doeDas padd s Lok Ry

A DI EaLll 2alS S L) Jsb e 100 piens 1 el Bdall o J5Y1 42 Ll
Ues odin O s T (&S5 Lnas WS) 3,815 3455 100 e 525 I LSTM dib
23 S aamly )3 hed 13 6li] g5V dab e o i

el oo cmulti-class classification problem bl sadxs i A Y ks
iyl phsenl o2 loss function (Uasdl) 5 Lsdl J10S” categorical crossentropy
055 S batch size dxbs g plodnl oy a3 53 olis 23 5odl Al ADAM (s

03 Sl a5 (reviews) daxrl o 64 (0



el éyge Ul alleodl pladiwl éuy poll LA @ino (10 106

model = Sequential ()

model .add (Embedding (MAX NB WORDS, EMBEDDING DIM,

input length=X.shape[l]))

model.add (SpatialDropoutlD(0.2))

model.add (LSTM (100, dropout=0.2, recurrent dropout=0.2))
model.add (Dense (13, activation='softmax'))

model.compile (loss="'categorical crossentropy', optimizer='adam',
metrics=['accuracy'])

print (model.summary () ) from keras.callbacks import EarlyStopping
epochs = 5

batch size = 64

history = model.fit (X train, Y train, epochs=epochs,

batch size=batch size,validation split=0.1,callbacks=[EarlyStopping
(monitor='val loss', patience=3, min delta=0.0001)1)

asluiillg Word2vec

ol a3 (Genism § ok 45 plsenls 65055 05 s o pls 23 50 e Lo A2
vectors Slgzwadl e desezes e B)le 4l ey categories «laly description
s Al ddowy bad W3 (bl S Chodl oIS s ) el Sl
o) SV ezl s vecl cvec 2 5 vecl fw Blaedl casw ! "Similarity”
gy o G llaall sl (category 24l1) &5 Al s vec2 5 (description
w1 2 a3 55 8y J] Ble 0 315 )

class TextSimilarity:def  init (self):
try:
self.model =
gensim.models.KeyedVectors.load word2vec format ('/Users/lamiaeaitmb
irik/Desktop/wiki.ar.vec')
self.index2word set = set(self.model.wv.index2word)
except FileNotFoundError:
raise FileNotFoundError
def avg feature vector(self, sentence, num features=300):

words = word tokenize (sentence)
feature vec = np.zeros((num features, ), dtype='float32')
n words = 0

for word in words:
if word in self.index2word set:
n_words += 1
feature vec = np.add(feature vec, self.model [word])
if (n_words > 0):
feature vec = np.divide (feature vec, n words)
return feature vecdef similarity(self, sentencel,
sentence?) :
vecl, vec2 = self.avg feature vector (sentencel),
self.avg feature vector (sentence2)
return self.cosine similarity(vecl, vec2)def
cosine similarity(self, vecl, vec2):
return 1 - spatial.distance.cosine(vecl, vec?2)



107 | oelinall 2184llg du pell Gé L

elliw Ul

] 5 gl g5 Jah o plasinaly SOl By 3l U o ple IS Ly e OIS
St s ol Bz ag oyl R 3151 B gp el L) 5181 Bl s oS
Cean i3 ol e Sbswll e el el Of Lide O o (sl W Blegr] 5 05
«Orthographic mistakes 455 +Uasl (Unstructured language dokis & &) |uail
o ,>1 «Unknown caracters &5 s & < ,~I Spelling inconsistencies &5Ms| <Lasls
Blys 38T Lol sudr L Lodas (U L (LIS doblewss Repeated letters &5 S
pizall ) eled1 o ndall £ a1 Eadlaadl Gplgad Gl i5 pazeos

Lo o 2ldg "Jupyter Notebook' e Jo sl o

:Janoll

https://medium.com/@mustaphaamine.kamil/arabic-text-classification-using-
nlp-b530565f18d



https://github.com/mustaphakamil/Arabic-text-classification/blob/master/TEXT_CLASSIFICATION.ipynb
https://medium.com/@mustaphaamine.kamil/arabic-text-classification-using-nlp-b530565f18d
https://medium.com/@mustaphaamine.kamil/arabic-text-classification-using-nlp-b530565f18d

oelbnll cl8allg dy ol dcll 108

ugl Phalwl Gudll yaill Jlll gaaldl (11
Automatic Arabic Text Summarization using Python

o sl 31 3 A S e a Il B5LESH 2SI Al R iy 2RI
automatic text el SLbl jasbll agl o S oLl A ELINTR
U3 mey a5l b Y 115 U goela 5 Tarina T 5105 5,5 Y1 ol gndl 0lin Jsummarization
e~ Arabic text summarization gyl el el J5bes S Lzl Sl sde 06
text highlighter el 53 351 s = 25 (s pall 1a 36 Y SAUL &5l G
EASC plisealy sioall ool el J g deasels Slla>ds iy pddviad) mas I tool
JFeS Ay e Ans el plal] JsLw .(Essex Arab Summaries Corpus)
Ailen 3l SO e Tl badodS o A58 deS S neadl eV o OIS ol s
L6 42 L)1 Bag of Words (BoW) el di 4 %659 &5 i 21 J5YI 43y bl
erm Frequency - Inverse Sl 4235 535 — pellaaadl 51,55 2 %60 8> cia> I
sVl elaedd %56 B> iis I &Ll 4z k)l (Document Frequency (TF-IDF)
K-Means J5S s SkipGram 3 505 : Word2Vec » 55,01 ] oW %485

L34ﬂ
skl (1Y ol Biler e foall 358l g tall e B Sladadl oda S s
bl aulhioll
:(BoW) cilod Al duén naled oaainiedl cilib ol
S5 did URL 0lge JJsosll @
from urllib import request
from bs4 import BeautifulSoup as bs

import re

.words tokenizer S| 5o 05 Aozl 3,y @

import nltk
.Arabic stopwords i )l (a3 gl OldS 436 s,y e



109\ W9 A wl el yaill Jlalil gara il (11

from nltk.corpus import stopwords

(ISRI Arabstemer) Arabic stemmer )| gdasll s, 20Y o

from nltk.stem.isri import ISRIStemmer

:(TF-IDF) ruAcllailiuoll 224 - pdlanoll 225 yadlod doadiuedl ailiiboll
LS s e s dazdl sl oY e
import nltk
:Word2Vec yailod doairivuedl il oll
(L) a2 100 Jskes skip-gram el gl:.m:J LZ,M 4 )3 5 sl il ey o3
sdeluadl 31531 Cale s

github.com/bakrianoco/aravec
install: full grams sg 100 wiki

sd>l5 Jiad URL ol J) Jsno 5l

from urllib import request

from bs4 import BeautifulSoup as bs

import re

import nltk
il 3 I LIS 256 s ey e

from nltk.corpus import stopwords

KMEANS é¢ gozs f\.b';...»\j shewY e

from sklearn.manifold import TSNE

from sklearn import cluster

from sklearn.metrics import pairwise distances argmin min
from sklearn.cluster import KMeans

S . |I

el ks o5 I ol olie ae CGIL esaS python olile mes o
:JEll ol ) Je Word2Vec #3500 sbizaly 255 HTML5\CSS3\JavaScript\PHP
/http://arabic.highlight.heliohost.org

JUIA LI
juinid I judal


http://arabic.highlight.heliohost.org/

oelbnll cl8allg dy ol dcll 110

e e Lol Ll I ] H[FN] (JsYl e
https://ar. wikipedia. org/wiki/%D8%A7%D9%84%D9%83%D9%88%
D9%86

arabic.highlightheliohost.org

Add the link of the article/webpage or add the desired text directly!

Please add the URL link of the article/webpage

|https:,",a‘ar.uflklpedla.orngki,a’%DB%A?%DQ%S‘i% D99%833%D9%88%D Q%BSI

Or add the text directly

diaw gaale 230 (llaz b 4gbs Oilgunlinall Jgl + dinw psale 160 po 351 (il (rdadll plaill (g Slaw 588 Glaam gunlios
i gaile 65 Jub . liy 8] pemll Elai b ARl8 Lalail @bl e csisls Loyl ek ole Sl gaslinll 43T Ll s
ol Bpall juolipall Ctung a7 o ke 2i3gsapsill Shgealinall ga oy aziall o oluall slesill Gzl jesall G ezl i)
oo lejr pgoliall pual . allell shiisl e ciziall oo bl lolaial Liliuall Sleolill JShe Cuil s gulil oyl o8
sl (8 5 Losn YIS S 16 ool Lo 1488 g - Jlaboll s Ll gl L3 ks Emanly dumsi ] 5 llsll Gola
gLyl Jol e jaenlion plbme lasiwl ai galell e el e 2lisiatll o Gl jend] d61md] lgaal 5 gelsll Jlsdl
swlwge 5 jswgrail g v pilall jgugdd] s . aﬂm“ sswgidl s ¢ pgdepiany , jwsSaly Jie ¢ o) Jub cisly JS ]
Olyaolis Cond bale g Wlae SlEEN aie iz ol 2o

Please add the desired sentences number to be highlighted

Pl

In case of both entered, the link of the article/webpage and the desired text is directly entered, then the highlighter will use the direct text

In case the entered number is greater than the whole document sentences, then the whole document will be highlighted

Highlight

‘highlighted text juas (2 21 £aS Gasdoll J2ad oo i 5N1 o

Arabic Text Highlighter Highlight Idea Howto Start? FAQ Contact Us

Important Highlighted Text by TF-IDF method

i Gl BB, sl 1 pnsll 2l o S 51y sl o sl gl gl ol lygunlipall 5T Lol s s gpale 230 llg 5 ygls Slygaclissll ol - G ale 160 o 53T (iUl il alsill (o slos L85 gloio ysoalizo
Bl o sz yplipall pal . @llall shial (ple ciatall o sy lalatal aftatusall Slygualizl Sl il e gl oyl g ol Bpall pealipsll g a7 of iie. saiaseil Eoaas Gl o iyl g pilgall S0 il bl Tl il
Jss il IS ol 5yLall ol g yguliss plbca alsail i gpalsl st cronll e plssiuod] oo gl s2dl Gyl lganl s ualelll Jall AT cro 5 legia SN 8 sl s 8 . JUaoll g 13l ol s i sl g csaniSl g allall
Shsoliss Caual lale g lios S 030 1nz of 2o + guolusge 3 ssusstmls 5 « ilall paisiit] s - ainall gugpll g g ssisars  yuosials o + )

Important Highlighted Text by Bag of Words method

i i ggile 65 i iy U1 pasll Bl o9 - 56 byl Bl o6 isls il sebs e Shgolisal 15Tl Gl Eiw e 230 s i gebs Shpolis ! £ Gl 160 g 3358 oyl Gl LBl 6 5 68 gl il
ol g 152 ssliall il . el shaial e caiall o sl Lalainl dsitatusall lyualipadl JSlis Sus) e gualil o8l 1 ol Bpall pualis Il g a7 of Sie. 3319908l Shygeolinall o 2y332all g2 yiliall slail Bzl yoaall G clyssl
Jss il S Wl 8)lall U2l ge ssalinn albucs alswil s alsll 6 rasnll 326 plasiasd] o Spuas2)l @il lgasl g cualall Ul AT (o6 5 lossa SESUN i 0 sl o 138 /DG G Ll 15 i Smly e i€l g il
sl Dl el g Llas SN 238 fuez ol Be 1 Jsuliuise 5 jssunisd 5 1 ilall jpusiil 5 aimall sl 54 Gs2mpiiesd  Jsuistali Jia 2l

=

1@&0 Iy

Aeddwiadl O g0l & tAnaconda Spyder o


https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D9%83%D9%88%D9%86
https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D9%83%D9%88%D9%86

111\ W9 A wl el yaill Jlalil gara il (11

s “ias ool cheliohostRicky e
ol 38T > — Visual Studio Code o

:Janoll

https://github.com/RaghadAlshaikh/Automatic-Arabic-Text-Summarizer#arabic-
text-summarization--text-highlighter-for-important-information-in-arabic-text



https://github.com/RaghadAlshaikh/Automatic-Arabic-Text-Summarizer#arabic-text-summarization--text-highlighter-for-important-information-in-arabic-text
https://github.com/RaghadAlshaikh/Automatic-Arabic-Text-Summarizer#arabic-text-summarization--text-highlighter-for-important-information-in-arabic-text

oelbnll cl8allg dy ol dcll 112

How Gioc)l odcidl poladinwl Jiugi cugy bl 6uoiA (12
to build Twitter bot using deep learning

iy JUs Y1 e s s e J 5,0 DI Ll 6 ST e bl Y1 0
.my personalized Twitter bot ;s 5 e aseddl &gt Juil G Jil ol ) 3

i LS T sy Bkt ol 36 oSG g oLt 5 S

Godlaodl 35130 plana 3185 iy pall ARG 3 50,35 wans OF o Ll AT Y1 UL
Sul JfY\ A 5w AL &> Led) Natural Language Processing (INLP) dodall 4 52l
oS plane Fhadsined! (el Ly )l B e Bkt g i el gl ST T oo
Lalu¥1 palandt a1 s Ls Yl odn L Sy Gl S0 puses s )LV Y
85 57 5o doncelall 4 alll Gl 3L s SLLy e sores tlans OB JEI 5 0 BL) Sl ool

el i Al L

e Cuoo oS ad

lgall

+LJ (Hugginface transformers) Hugginface Ve o450l icSl Coddenl A3
Gloy cdddises ¢lgs) pre-trained models G kel bl e O by s oty
ol i) el

Ll Olu>y cwdsenly Google Colab cwdsed (o ol 501 Lazsy Hlesy
o2 ol GPUS s I

wlw il gagodl
ol S e GPT-2 Lpe Brdsad 05 wadsenal sl base moéel g..al..fﬁ\ i
classic Arabic &GSl Lyl LS55 &0, plsenls 3 5adl o) o5 . Huggingface
i LSty o3 padl ool Sy . Wikipedia dump

from transformers import AutoTokenizer

from transformers import Trainer,
TrainingArguments, AutoModelWithLMHead

tokenizer = AutoTokenizer.from pretrained("akhooli/gpt2-small-
arabic")

model = AutoModelWithLMHead.from pretrained("akhooli/gpt2-small-
arabic")



113 | Stoc)l pdeil pladiiwl Jiygi wgy <Liv] 4644 (12

Sldl b e Byt i LY 35005 24l el ddlaed tokenizer o ye Ll (Y
classic Arabic model (SIS o2l 723 502dl =3 50dl s ol U g5 . (history gu,ldl)

from transformers import pipeline

classic_ar bot = pipeline('text-generation',model=model,
tokenizer=tokenizer,config={'max length':60})

o MRS ey e Y] e a1 sk 8 el Rl g sLaY Ll ey L 13)
ASG SN £yl Bl L S5
L "T don’t know el ¥ 2 a3 Ao JLSY 23 potdl pltsind sl 15 (Jladl fonw e
: eai| iy o)l

classic_ar bot('alel ¥ L51")
ok b gk el o5k

e LT Al e ddlwad) ods a5 G yudaldl oo GLS 13) is eplel Y
GLS Judo Gaw e Y 45/ JLS5 juiladl sl gi Y

i o Il ol b e s 5 IS 5 (el B pall AL e 13 Ao Bl 05555
I don’t know, even if this was to be a non-negotiable issue, but one side said "

."there was only enough evidence

A sl 0,50 1 (g rmaedl ool (ol Jalot G gd &y e &y e sy 350 byl I3
el iy & el g ) Gl A 350l B2 ) Meed BBl e

cls ar bot('adyle go LS5I")
1 il Sl pes
1992 ple 6 ails Ledyld 4 ddshy syg0 ddshy 5T abils .dyle gio L/

pdledl wls 6 Liolisy siwiilo e Ojliy cais) ooy Liyylels dyuil ws

Mas T don’t know" J-s¥1 &)l Led 83 ¥ 450 ) J g &8ss Ao oLk w5l o5
& paodl &gl "understand (..@.é.“»” Y CS)A;H ol e
aJ Jn ol duy poll bl plas il gagoddl hun



oelbnll cl8allg dy ol dcll 114

bl dcgono

oo 0555 Ay Aol & paad) Sl 3l s pazes b Ledseia]l dataset UL! de ez
Lo 55 DL o ol 3l (5 505 o) g ) B & 55 G 5kms 520 135 40.000
Aagoloda BUad G d 1da ST ((negative &ukw s positive izll)

Rania Kora; Ammar Mohammed, 2019, “Corpus on Arabic Egyptian
tweets”, https://doi.org/10.7910/DVN/LBXV9O, Harvard Dataverse, V1

8182l LAl

B ool bl sl ey p 31 Y

import pandas as pd

import json

import re

from sklearn.model selection import train test split

s Sl o3 DUy e sazme JI TSV ol xl Loy p 31 (U5 dny

#save dataset as text file

def build text files(data, dest path):
f = open(dest path, 'w')
f.write(" ".Jjoin(data))

#load dataset into Pandas Dataframe
data df = pd.read csv('40000-Egyptian-tweets.tsv', sep='\t',
header=0)

#split dataset into training and validation
train, val =
train test split(data df["review"].tolist(),test size=0.20)

#create the textfiles
build text files(train, 'train dataset.txt')
build text files(val,'val dataset.txt')

oVIs cvalidation iU %205 «training v, %80 S UL e gaee ity Caad AR
-Huggingface <ULy de yozes 58 dlehosey UBT

from transformers import
TextDataset,DataCollatorForLanguageModeling

def load dataset(train path, test path, tokenizer) :

train dataset = TextDataset (
tokenizer=tokenizer,
file path=train path,
block size=128)

val dataset = TextDataset (
tokenizer=tokenizer,
file path=val path,
block size=128)

data collator = DataCollatorForLanguageModeling (


https://doi.org/10.7910/DVN/LBXV9O

115 | Stoc)l pdeil pladiiwl Jiygi wgy <Liv] 4644 (12

tokenizer=tokenizer, mlm=False,
)

return train dataset,val dataset,data collator

train path = 'train dataset.txt'

val path = 'val dataset.txt'

train dataset, val dataset,data collator =
load dataset (train path, test path, tokenizer)

CJ}.«J\ oo L}r\.&:ﬁww SJ.M:- <LLI i gozs C.Mi «QT}IU
I lbaall plisly 5l ey o A

training args = TrainingArguments (
output dir="/content/model 40k", #The output directory
overwrite output dir=False, #overwrite the content of the
output directory
num train epochs=7, # number of training epochs
per device train batch size=16, # batch size for training

per device eval batch size=32, # batch size for evaluation
eval steps = 100, # Number of update steps between two
evaluations.

logging steps = 100,

save steps=800, # after # steps model is saved

warmup steps=100, # number of warmup steps for learning rate
scheduler

prediction loss only=True,

evaluation strategy='steps',

learning rate=5e-5,

weight decay=0.01

)

trainer = Trainer (
model=model,
args=training args,
data collator=data collator,
train dataset=train dataset,
eval dataset=val dataset,

)

trainer.train ()

validation loss &eall ;e il Uss Ly G5 days ool 23 7 50ked 23 potdl by o i
.(saturate c.:.:J\) sy olasYl u’



oelbnll cl8allg dy ol dcll 116

*%%x%* Running training ****x
Num examples = 4100
Num Epochs = 7
Instantaneous batch size per device = 16
Total train batch size (w. parallel, distributed & accumulation) = 16
Gradient Accumulation steps =1
Total optimization steps = 1799
e [1799/1799 11:13, Epoch 7/7]

Step Training Loss Validation Loss

100 6.637100 5.874622
200 5.777900 5.524735
300 5.485500 5.393721
400 5.341800 5.311175
500 5.273400 5.249892
600 5.156900 5.211305
700 5.107400 5.172646
800 5.065500 5.147205
900 4.988500 5.128150
1000 4.964200 5.104940
1100 4.925600 5.093812
1200 4.897200 5.080115
1300 4.869400 5.070085
1400 4.826100 5.063729
1500 4.843500 5.058012
1600 4.811400 5.054990
1700 4.803400 5.051064

(G eall) (25 gdl oyl

evalfloss
tog cualcas

Cs,';uu M/u»



117 | Stoc)l pdeil pladiiwl Jiygi wgy <Liv] 4644 (12

:fine-tuned model B b szall dpdad) 5 50 259 Bse oY

model = AutoModelWithLMHead.from pretrained("/content/model 40k")
egy ar bot = pipeline('text-generation',model=model,
tokenizer=tokenizer,config={'max length':60})

T don’t know" J| o5 (3 & jaedl &y pall 2L Aol s o 23 5001 L2
egy ar bot('dyle guo L3I")

Giany L1 51 L 0s d> ks dals JS 5 LI LI J1 4nl dyle g LSIY
roladal JES1 oL adal

e s
"I do not know what I am in everything, I will hide this limit, my brother. I love exams

more exams"

I ¥ ssiie doly e b dla Uy & paedl Lol UL Jorr A5 OV 350l iy
bl oY Y e g Y 35l

gl yaunAaj

Hagi bl Jyjid

ot Gt ST s aland o 2oLl 2 5 by plasenls (6 318 50 5 50l Loy p 31 0 ) 3
L5 e oSl gl o e SUSYI ) ol sty (Sl e sl clb N
ks Oleo Jliol Sla ol o Y pla JLdl a5 e UL

o oblae] e UL b



oelbnll cl8allg dy ol dcll 118

Mdata" Maes 335250 525 <"tweet.js" ol 3l O slaall Caladl ans «SBLAL 55 da

dols JSON Cale JI s Jlacdl 3" (o)l dy 3smsall Gl Gensl (Sl sy

"tweet.json"

Js tweetjs @

Users > dallal > Desktop > Js tweet.js > ...
i window.YTD.tweet.part® = [
o) {
"tweet" : {
"retweeted" : false,
"source" : "<a href=\"http://twitter.com\" rel=\"nofollow\">Twitter Web Client</a>",
“entities" : {
"hashtags" : [ I,
"symbols" : [ 1,
"user_mentions" : [ ],
"urls” : [ ]
L
"display_text_range" :
ugn,
n3qn
1,
"favorite_count" : "@",

UL Jray o 531 03

f = open('tweet.json').read() #read JSON file
data = json.loads (f) #load file content into list of Python
dictonaries

texts = []
for tweet in data:

text = "".join(re.findall (r' [\u0600-\uO6FF]| ',
tweet ['tweet'] ['full text'],

re.UNICODE)) #only store Arabic text
if len(text)>3: #igonre tweets with length less than 3 characters

texts.append (' '.join(text.split()))
5831 ¢lswwls Huggingface & Leeltsony ULy desames J] UL Jo g2 g,&.‘,ﬁ oY
el

train, test = train test split (texts,test size=0.1)

build text files(train, 'train dataset.txt')
build text files(test,'test dataset.txt')

S poll e 5ol SULY) B sozes plidinals 2350l Jas Sy

training args = TrainingArguments (
output dir="/content/personal", #The output directory
overwrite output dir=False, #overwrite the content of the
output directory
max steps=2000, # maximum number of steps
per device train batch size=16, # batch size for training
per_device eval batch size=32, # batch size for evaluation



ool pleill pladiwl yiigi cigy 2Ll 6uaiA (12

eval steps = 100, # Number of update steps between two
evaluations.

logging steps = 100,

save steps=800, # after # steps model is saved

warmup steps=100, # number of warmup steps for learning rate
scheduler

prediction loss only=True,

evaluation strategy='steps',

learning rate=5e-5,

weight decay=0.01

)

trainer = Trainer (
model=model,
args=training args,
data collator=data collator,
train dataset=train dataset,
eval dataset=val dataset,

)
bis i pdseala Y 02000 o Slshsdl saa) asVl dodl oy caad 350l o
85k 1600 dn By &b szall #3502l checkpoint

:two epochs 5 7 e w3 el oyl 05

**%%%* Running training ****x
Num examples = 4100
Num Epochs = 8
Instantaneous batch size per device = 16
Total train batch size (w. parallel, distributed & accumulation) = 16
Gradient Accumulation steps = 1
Total optimization steps = 2000
Continuing training from checkpoint, will skip to saved global_step
Continuing training from epoch 6
Continuing training from global step 1600
Will skip the first 6 epochs then the first 58 batches in the first epoch. If tt

Skipping the first batches: 100% [ 58/58 [00:00<00:00, 642.32it/s]

S [2000/2000 02:28, Epoch 7/8]

Step Training Loss Validation Loss

1700 4.803500 5.048420
1800 4.805800 5.045307
1900 4.794200 5.044737
2000 4.773100 5.044055

*%x%%** Running Evaluation **xx*
Num examples = 1016
Batch size = 32

**%*%** Running Evaluation ****x
Num examples = 1016
Batch size = 32

*x%** Running Evaluation *****
Num examples = 1016
Batch size = 32

***%* Running Evaluation ***xx
Num examples = 1016
Batch size = 32

il ol



oelbnll cl8allg dy ol dcll 120

I el el2d] 3 gold Ko (Y

Ol cpe L JUSUD Lo Lad pgdl g does AT g U1 0 4l dyle o L3I
s g Al s U

Ll 5 LS 55 el ezl (ST cilate lylall sl Ladsen] il e dlexdl (g 5203
il o 33,50

oLl

S LI e 5 e ST Bl (6 SIUL Jlesd Slela s oY1 G il A3

Ol o (UL Slegorma 35 a m3ledl oda oo o pdls -liis O] - o poadl sLSY j2abes
.,;g,wiwmmc}mmlww@w%w@w\

:Janoll

https://medium.com/@abdelrhman.d/how-i-created-my-own-twitter-bot-with-
deep-learning-e9c7bf814ae8



https://medium.com/@abdelrhman.d/how-i-created-my-own-twitter-bot-with-deep-learning-e9c7bf814ae8
https://medium.com/@abdelrhman.d/how-i-created-my-own-twitter-bot-with-deep-learning-e9c7bf814ae8

121 | oelinall 2184llg du pell Gé L

AUl Ay dugidoll dusscll old iy Groctl il (13
Deep Learning & Handwritten Arabic Digits

MNIST Al o & ¢Sl p5,Y1 ULy Ao gores 42 Goasd) Whazld "hello world” 085 L Lle
5,6) 58T ey e wleddl i Godas @sT5 «( MINIST handwritten number dataset)
Arabic Handwritten JJl lse LeSadl Loall Gyl @lls do ez splazadl
5 alall L;@JA‘Y\ dnalodl L) b ULy &e gazes 25 «Characters Dataset (AHCD)

convolutional neural net 42 dnae iSE o, fast.al 45 f.bawj JLadl &
idz lall G} %0+99 By oo JS4 AHCD Ciiead (CNN)

Ly 2ol GPU @l g Jl Gadlas sy oy o35 Lzl () lesladl sl 2l o3 N
rcuda pliseny

sreload ext autoreload

sautoreload 2

$matplotlib inlinefrom fastai.vision import *

from fastai.metrics import error rate

import csv

import numpy as np

import PIL
import pandas as pddefaults.device = torch.device('cuda')

data pre- Lol dxdlaadl s UL o Jos Shlus o el e bl s LS
LSt UL g &M olghasdl L Lod ieeal SV il SUL processing
i N Al

CSV wlo o al il (1

15 308 784 o 558 CSV iheS AHCD i o2y 2331 & Y MNIST Sls| o
wjj\mﬁ‘wbbw@%}msri 28 x28uwwai>‘j3)j*pk)ﬁw()§éﬁ>cﬁ%>
et o T 60 (e 0,85 SLL e sazen 0 Loys & S Gln oo 2 S5V dogel
SUA (pd SPandas 5l ol Ll dd) .4k (o)l de sazmad s do pnly Cod A cdidan]
tdawiell Pandas ;e read csv dls s pisen

trainrows = 4000
train = pd.read csv('csvtrain.csv', nrows=trainrows)



Al Ay dugiA ol o)l rolé g Guoct! il (13 122

Jgndl dalleod aley bl 8uill by duis ) gl (2

Ol a5 (Lo, 784 x Jsb 1) doddans J155 Y &las 55 50 JS 0505 6 STUI GobLI Lo
13LJ .matplotlib pltseals RGB 3550 JI ek 525 (o (Ko i sla¥l B3kanas ing o 055
RGB )50 e 0 5k3 03 (515 Gs 50001 Restnet34 3 5o pdseis IRGB

o3 o) ol Go - 5y b ool Pandastrain bl b dlaed! Bl ods 25k
iy [0 1] Gl GOV s iy Tpplams J) iall s JSL5 Aoty (i
GPNG Gowis 3y 50all Lt matplotlib. plot 4K psess oYl &) Gedld] e

L el [path/digits Mawod)

ROV AP SO YRIPC JO98 1 BN FCSC 0 B TSN BN/ [JUUCI LI SURNF SO g I Y 11D

def pdMakePlot (row) :

pixels np.array(train.iloc[[row]], dtype='uint8"')
pixels pixels.reshape ((28, 28)).T

pixels np.true divide (pixels, 255)

dim2 = np.zeros((28,28))

dim3 = np.zeros((28,28))

pix = np.stack((pixels, dim2,dim3), axis=2)
row += 1

filename = "digits/%s.png" % row
plt.imsave (filename, pix)

plt.close('all')

return

W ol 66161 Jano bl junl alacl (3

il odgd ) saall ULy SlannY fast.ailmageDataBunch.from dfdi b puses o0
okl Slike sland Jo ggow Pandas bl | JI plos U G Laanll
.valid labels d>JLa)l eolansdls

#import training labels into numpy arraycsv = np.genfromtxt
("csvtrainlabel.csv', delimiter=",")

csv = csv[0:trainrows]

csv csv.astype ('int32"'")

csv np.add(csv, 1)

csv[csv == 10] = O#np array that we'll make into the filenames
#from 1 to trainrows

trainrange = trainrows +1

files = np.arange (l,trainrange)

files files.astype (str) #convert to filenames
i=0;
=15
for file in files:
files[i] = "%s.png" % J
i+=1

j +=1



123 | oelinall 2184llg du pell Gé L

if i >= trainrange: break#combine two arrays into dataframe and

add header
df = pd.DataFrame ({'name':files, 'label':csv})
df.head ()
Out[16]: name label
0 1.png 1

1 2.png 2

2 3.png 3
3 4.png 4
4 5.png 5

Ly Lol SbLJY )
ETL Jraslls Jsmells ol sVl Ao o 85 ) 55ela o505

L) duy jaill jgnll hang dalleo (4
Cal oy cpiid) 5 5o Bodlnd Gl abiss 21 pdMakePlot() 1l plsend Loy (g
Gios oty Lol Ul Trainrange pxe dawlp Lgales 0= sl sde i

i =
max trainrange-1

for x in range (i,max) :
pdMakePlot (1)

i+=1

I o

en ol Sledkatdl o o s 3 20 L] Lgoendl oatl] 05580 0V o

#define our transforms

tfms = get transforms(do flip=False)#define our DataBunch

data = ImageDataBunch.from df (path=path, df = df, ds tfms=tfms,
size=24) #define our learner

learn = create cnn(data, models.resnet34, metrics=accuracy)

ioedlnas bad T e IS DataBunch oy 3 s i gazes o 8 k0 )] LiSlay ey of L3
Gt JSLig¢%F§<)§

data.show batch (rows=3, figsize=(7,6))



Al hAy 8ugidoll du o)l olé g ool fodeidl (13

0
4
Al Jases & e lany B> 9

learner Wlxall &)lens Jo dloais 3 15 +JY learn.model Joxis Cal Lesles i 550V
Ik bees (Jl> Zjd\.c .Cl;» s laige <iS'13 Larchitecture

JoUl wyjal

learn.fit one cycle (4)

Total time: 00:16

epoch train_loss valid_loss accuracy
1 1.461245 0.665243  0.802500
2 0.790824 0.228773  0.931250
3 0.502614 0.166105 0.961250

4 0387820 0167723  0.955000
L6 16 IM> %95 B resnet34 e ol J
8,0 4y learning rate o) Juas J.m\.bu Lses .J@T}a L Jais of Sz Lol el
.6)5T
learn.lr find()LR Finder is complete, type

{learner name}.recorder.plot() to see the
graph.learn.recorder.plot ()



125 | oelinall 2184llg du pell Gé L

0.40

0.38

Loss
[=]
L
o

034

0.32

1206 1e05  1eDd 1803 1ed2  lel
Learning Rate

‘tha\.\,,svxauw

M Lo S 3T 15 Jams e gmamedl I3l e G ai o a1 ool Jime O 55
CNN ©lib jas unfreeze deazs sl p sk o3 9.05 Jball o e (Uazdl 55l
.%)M‘SJLP!)

learn.unfreeze ()
learn.fit one cycle(3, max lr=slice(.006, .004))

Total time: 00:15

epoch train_loss valid_loss accuracy
1 0.287015 0.307796 0.928750
2 0.221842 0.030812 0.991250

3 0.124907 0.009651 0.996250

ULy oo de Al A sazeodl blie 9699.6 Gt G535 73505 L) ool A3B te Las dn
oo (o Gl Bl laland s ) oyl

e3goJl olaaiwl
DL Sy s el 2 oMel DI plabunl g taodbinids (3 505 Lold sl 01 s 0V
img = open image ('/path/3.png')pred class,pred idx,outputs =

learn.predict (img)
pred classCategory 4 <--- that is correct



Al Ay dugiA ol du ol rolé Ulg Guoc)! il (13 126

J}T Uwﬁﬁwdwby\b.s;@bd .UT ‘é:é.sjg;ﬂpc:;}&} BN Y) C‘JT OTMOQ‘
Lo ol aylis LS8 med LV Sy oo QS degormadl Blis 23500l frts La
o3 sy 5all Lo ) Sl ] o 5

:Janoll

https://medium.com/towards-data-science/deep-learning-handwritten-arabic-
digits-5¢7abc3c0580



https://medium.com/towards-data-science/deep-learning-handwritten-arabic-digits-5c7abc3c0580
https://medium.com/towards-data-science/deep-learning-handwritten-arabic-digits-5c7abc3c0580

127 | oelinall 2184llg du pell Gé L

Image 2l hay ugidoll (il Gyl jgnll wrini (14
classification for Arabic handwritten character

dun LA

SBLs i pazes 0555 il G a0 W b Sl Ga N e G pil) Wgloms
feature syedl ol ol L35 o Jpandl qus 25 285 3> 5550 13440 (o oyl
525255 0 oo JuSl 0d 5l s . JuuSl 28 normalizing & 55 32 b ¢ extraction
o) Tl plaiid (2 120 oy o) L) gl o 5 el G s JS500 Jr s

.—2.2.S Convolutional neural network LMl

Jdadl
sV e gall sane Slakas & ey p 3la Alial oda b

(UL e VT e

# Load the training data

x train = pd.read csv('Arabic Handwritten Characters
Recognition/csvTrainImages 13440x1024.csv', header = None)
# Load training labels

x label = pd.read csv('Arabic Handwritten Characters
Recognition/csvTrainLabel 13440x1.csv', names=['count'])
# Load test data

y test = pd.read csv('Arabic Handwritten Characters
Recognition/csvTestImages 3360x1024.csv', header = None)
# Load test labels

y label = pd.read csv('Arabic Handwritten Characters
Recognition/csvTestLabel 3360x1.csv', header = None)

iy SULI of e ST drlbow 0 Y1 @
3. Check for erroneous values

3.1. Check for missing values

The result bellow shows that there are no missing values
null_columns=x_train.columns[x_train.isnull().any()]
x_train[null_columns].isnull()-sum()

Series([], dtype: float64)

3.2. Check maximum value

Since we are workin with pixel values, the maximum value should not exceed 255.
x_train.values.max()

255

3.3. Check for negative values

(x_train.values < @).any(), (y test.values < 8).any()

(False, False)

Since we are working with pixel values, there should be no negative values. The result shows there are no
negative values.



AUl nAy Ogidoll il @ pall jgnll arini (14 128

dowall e Gl training copdS J) Lol oyl DLy s Uyes AL skl e

.validation

x train, z val, x label, z label = train test split(x train,
x label, test size=0.20, random state=42)

yrint(x_train.shape, x label.shape, y test.shape, y label.shape, z val.shape, z label.shape}

10752, 1024) (10752, 1) (33668, 1024) (3360, 1) (2688, 1824) (2688, 1)

sdeeVly O sinall sie dells

o S5 g (5 3de I s 8 SUL e ol AT L drn oY1 o e
wle ghaadl Ol 95 120 o Lo g

x train = x train.values.astype('float32"')

x label = x label.values.astype('int32')-1 #Arabic letters are
28 (index starts from 0-27)

y test = y test.values.astype('float32")

y label = y label.values.astype('int32')-1

z val = z val.values.astype('float32")

z label = z label.values.astype('int32')-1

#images, J|[# images, # features(32X32) | ;o UL a3 8le] Jlpbos o
el Sl 5 pedl J] Aall UL O e USTU o# pixcels, # pixels]

X _train = x train.reshape (-1, 32, 32)

y test = y test.reshape(-1, 32, 32)

z val = z val.reshape (-1, 32, 32)

x _train.shape, y test.shape, z val.shape

x_train = x_train.reshape(-1, 32, 32)

y test = y test.reshape(-1, 32, 32)

z val = z val.reshape(-1, 32, 32)
x_train.shape, y test.shape, z val.shape

((1e7s2, 32, 32), (3360, 32, 32), (2688, 32, 32))

OV 52 12550 o 155 S0 JS B8 e Lol SULYI e sares (s 505 @
fod) otV doll) 255 o Lgopmndty o3 oSl o sl 120 o Ll
(SN

X _train = x_train / 255
y test = y test / 255
z val = z val / 255

5y50 JS bl i o U sl 4 & JoaU Convolution2D <lib veai o5 @

ol gl 25 .(channels <l g3 «columns sdes] crows i cbatch dxss) J|

T 13 el 0S5 Wl o B0 ske sl T s 8y guall COSTIS Le J)
.s:)[%JLU 1 9LL19! VJf‘.U ‘QsJLA)



129 | oelinall 2184llg du pell Gé L

X _train = x train.reshape(-1, 32, 32,1)

y test = y test.reshape(-1, 32, 32,1)

z val = z val.reshape (-1, 32, 32,1)
(x_train.shape[l:], y test.shape[l:], z val.shape[l:])

bl sae fs><d One Hot Encoding o3l 4y e 2l plideal J) ol Nl e
1 dagy) 5l 0l 0l Bl sl 5Ll i G (S8 ] e 345 (0 (28)
Ol UL

x label = to categorical (x label, num classes=28)
y label to categorical(y label, num classes=28)
z_ label to categorical(z label, num classes=28)

23g.0J JuAsi (e jgicl
LI Lanall e LSt i) e dropout ol ded fuadl sl T e
a3l S generalize ool e LeSls dely b 1A coverfitting

# CNN to find the best dropout

nets = 4

model = [0] *nets

input shape = (32, 32, 1)

history = [0] * netsfor j in range (nets):

model[j] = Sequential ()
model[j].add(Conv2D (16, (3,3), padding='same',
input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model[j].add(BatchNormalization ())
model[j] .add (MaxPooling2D (pool size=2))
model[j].add (Dropout (rate=j*0.1))model[]j].add (Conv2D (32, (3,3),
padding='same', input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model[j].add(BatchNormalization())
model[j] .add (MaxPooling2D (pool size=2))
model[j].add(Dropout (rate=j*0.1))

model[]j].add (Conv2D (64, (3,3), padding='same',
input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model [j] .add (BatchNormalization())
model [J] .add (MaxPooling2D (pool size=2))
model [j] .add (Dropout (rate=3j*0.1) )model[j].add (Conv2D (64, (3,3),
padding='same', input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model[j] .add (BatchNormalization())
model [J] .add (MaxPooling2D (pool size=2))
model[j].add(Dropout (rate=j*0.1))

model[j].add(Flatten())



AUl nAy Ogidoll il @ pall jgnll arini (14

model[j].add(Dense (128, activation='relu'))
model[j].add(BatchNormalization())
model[j].add (Dropout (rate=j*0.1) )model[]] .add (Dense (28,

activation='softmax'))
model[j].compile (optimizer="adam",
loss="categorical crossentropy", metrics=["accuracy"])

130

names =

S e S Lyes Y1 o

["O%", "10%"’ "20%"’ "30%"]

for j in range (nets):
history([j] =
S,
validation data = (z val,z label), verbose=0)

print ("Dropout {0}: Epochs={1:d}, Train accuracy={2:.5f},
Validation accuracy={3:.5f}".format (

model [j].fit(x train,x label, batch size=32, epochs

names[j],5,max (history([j].history['acc']),max (history[j].history['Vv

al acc'])

))

styles=["':","-.","'

plt
for

plt.
plt.
plt.
plt.
plt.

.figure( figsiée= ( lé ,5) S

i in range(nets):

plt.plot(history[i].history['val acc'],linestyle=styles[i])
title('model accuracy')

ylabel('accuracy')

xlabel('epoch’)

legend (names, loc='upper left')

show()

model accuracy

accuracy

00 0s 10 15 20 25 30 is
epoch

-g2s> Dropout %30 ;i &) 8 coMel 55 STl Il e L

40

CCNIN () o) ol ol ol Sy

# CNN to find the best filter mapping

nets = 4

model = [0] *nets

input shape = (32, 32, 1)

history = [0] * netsmodel = [0] *netsfor j in range (nets):
model[j] = Sequential ()

model[]j].add (Conv2D((j*16)+16, (3,3), padding='same',
input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model [j] .add (BatchNormalization())

model [J] .add (MaxPooling2D (pool size=2))



131 | oelinall 2184llg du pell Gé L

model[j].add (Dropout (rate=0.3) )model[j].add(Conv2D((j*32)+32,
(3,3), padding='same', input shape=input shape,
kernel initializer='uniform',
activation='relu'))
model[j].add(BatchNormalization())
model [j] .add (MaxPooling2D (pool size=2))
model[j].add(Dropout (rate=0.3))

model[j].add(Flatten())
model[j].add(Dense (128, activation='relu'))
model[j].add(BatchNormalization())
model[j].add (Dropout (rate=0.3))model[]] .add (Dense (28,
activation='softmax'))
model[j].compile (optimizer="adam",
loss="categorical crossentropy", metrics=["accuracy"])

DYl Lyes oY1

names = ["16","32","48","64"]

for j in range (nets):

history[j] = model[j].fit(x train,x label, batch size=32, epochs =
5,

validation data = (z val,z label), verbose=0)

print ("CNN {0}: Epochs={1l:d}, Train accuracy={2:.5f}, Validation
accuracy={3:.5f}".format (

names[j],5,max (history([j].history['acc']),max (history[j].history['Vv
al acc']) ))

stylles=[ani R st bR R R SR R R ]
plt.figure(figsize=(15,5))
for i in range(nets):
plt.plot(history[i].history['val acc'],linestyle=styles[i])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch"')
plt.legend(names, loc='upper left')
plt.show()

model accuracy

0.8

=
o

accuracy

=
=

0.2

0.0

00 05 10 1s 20 25 30 35 a0
epoch

CNN J Sl sall ks

32-16 o
64-32 o



AUl nAy Ogidoll il @ pall jgnll arini (14 132

96-48 o
160-64 o

AISS Jolied A o) ol il n 160645 9648 c64 32 0f sy oMl il oy
64232 ,le Sl

Addides Sldae Lyl A by i Lses 0¥ @

def create model (optimizer='Adam', kernel initializer='uniform',
activation='relu') :model = Sequential ()model.add(Conv2D(l6, (3,3),
padding='same', input shape=input shape,
kernel initializer=kernel initializer,
activation=activation))
model.add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (32, (3,3),
padding="'same',
kernel initializer=kernel initializer,
activation=activation))
model.add (BatchNormalization())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (64, (3,3),
padding="'same',
kernel initializer=kernel initializer,
activation=activation))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (128, (3,3),
padding="'same',
kernel initializer=kernel initializer,
activation=activation))
model.add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (256, (3,3),
padding="'same',
kernel initializer=kernel initializer,
activation=activation))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add(Flatten())
model.add (Dense (128, activation='relu'))
model .add (BatchNormalization ())
model.add (Dropout (rate=0.3))# fully connected Final layer
model .add (Dense (28,
activation='softmax'))model.compile (optimizer=optimizer,
loss="categorical crossentropy', metrics=['accuracy'])
return model

Lol Jlyss Kernel initializerss Optimizers olwoswadl) dakides Oladas 25 @
oldaall 03 23l e, #all (activation functions



133 | oelinall 2184llg du pell Gé L

optimizer = ['RMSprop', 'Adam', 'Adagrad’']

kernel initializer = ['normal', 'uniform']
activation = ['relu', 'linear']for a,b,c in [(x,y,z) for x in
optimizer for z in activation for y in kernel initializer]:
params = {'optimizer' : a , 'kernel initializer' : b ,
'activation' : c}
print (params)
curr model = create model(a, b, c)
curr model.fit(x train, x label,
validation data=((z val,z label)),

epochs=5, batch size=32, shuffle=True,
verbose=1)

optimizer: 'Adam’,'} elibuul ) ols dhe gl Ll dx e

{"kernel initializer: 'uniform’, 'activation" relu

roledaall Jadl e Sl 5 50

input shape = (32, 32, 1l)model = Sequential ()
model.add (Conv2D (32, (3,3), padding='same',
input shape=input shape,

kernel initializer='uniform',
activation='relu'))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (32, (3,3),
padding='same', input shape=input shape,

kernel initializer='uniform',
activation='relu'))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (64, (3,3),
padding='same', input shape=input shape,

kernel initializer='uniform',
activation='relu'))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Conv2D (64, (3,3),
padding='same', input shape=input shape,

kernel initializer='uniform',
activation='relu'))
model .add (BatchNormalization ())
model.add (MaxPooling2D (pool size=2))
model.add (Dropout (rate=0.3) )model.add (Flatten())
model.add (Dense (128, activation='relu'))
model .add (BatchNormalization ())
model.add (Dropout (rate=0.3) )model.add (Dense (28,
activation='softmax'))
model.compile (optimizer="adam", loss="categorical crossentropy",



AUl nAy Ogidoll il @ pall jgnll arini (14 134

metrics=["accuracy"])
model . summary ()

L3 a3 Fa3Mad 3l ol A3

history = model.fit(x train, x label,
validation data=(z_val,z label),epochs=10, batch size=32,
shuffle=True, verbose=1l)

Visualization s Jle

# Accuracy VS Epochs
# summarize history for acuuracy
print (history.history.keys())

plt.
.plot (history.history['acc'])

.plot (history.history['val acc'])
plt.
plt.
plt.
plt.
plt.

plt
plt

08

=
=

accuracy

=
=

0.2

0.0

figure (figsize=(15,5))

title('model accuracy')

ylabel ('accuracy')

xlabel ('epoch')

legend (['train', 'validate'], loc='upper left')
show ()

model accuracy

— ftrain
wvalidate

epoch

# Loss VS Epochs
# summarize history for loss

plt.
.plot (history.history['loss'])
.plot (history.history['val loss'])

plt
plt

plt.
plt.
plt.
plt.
plt.

figure (figsize=(15,5))

title('model loss')

ylabel ('loss')

xlabel ('epoch')

legend (['train', 'wvalidate'], loc='upper left')
show ()



135 | oelinall 2184llg du pell Gé L

model loss

— frain
validate

loss

epoch
.¢A¢A;w§lcfjaﬂ\liﬁx3Ujps‘)Y\ .
model.save ('my model.hdf5"')
evaluate = model.evaluate(y test, y label, verbose=1)

evaluate = model.evaluate(y test, y label, verbose=1

3360/3360 | ] - 1s 394us/sample - loss: 0.2838 - acc: 0.9098

2l 85 e J el ol mall W5l cepochs <l 25 10 e %90 e la Ji) @

epochs = 25

from keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint (filepath="my model.hdf5', verbose=1,

save best only=True)history = model.fit(x train, x label,
validation data=(z_val, z label),
epochs=epochs, batch size=32, verbose=1l,

callbacks=[checkpointer])

model.load weights ('my model.hdf5'")
555250 Bl icll e

metrics = model.evaluate(y_test, y_label, verbose=1)
print("Test Accuracy: {}".format(metrics[1]))
print("Test Loss: {}".format(metrics[e]))

3360/3360 [ ] - 1s 393us/sample - loss: 0.1214 - acc: 0.9649
Test Accuracy: 0.9648809432983398
Test Loss: 0.12135044537551169

Precision &.1) classification report <iiwadl 8 N> e Lol sod ok oYl (2
(support el (fl-score) fl é>,>5 recall slesn N1y



AUl nAy Ogidoll il @ pall jgnll arini (14 136

precision recall fl-score support

0 0.97 1.00 6.98 120
1 0.99 0.99 0.99 120
2 0.90 0.97 8.93 120
3 0.97 0.92 0.94 120
4 0.99 0.96 0.97 120
5 0.94 0.98 .96 120
6 0.98 0.97 0.97 120
7 0.91 0.99 .95 120
8 0.93 9.93 8.93 1208
9 0.94 0.98 0.96 120
10 0.98 0.90 6.94 120
11 0.97 1.00 0.98 120
12 0.98 0.98 .98 120
13 0.97 0.97 @.97 1208
14 0.98 0.93 .96 120
15 0.96 1.00 6.98 120
16 0.99 0.96 0.97 120
17 0.98 0.98 .98 120
18 0.99 0.97 @.98 1208
19 0.90 0.97 8.93 120
20 0.96 9.91 8.94 120
21 0.98 0.97 0.97 120
22 0.99 1.00 1.00 120
23 0.98 0.98 @.98 1208
24 0.96 0.93 6.94 120
25 0.97 0.96 8.97 120
26 0.95 0.94 0.95 120
27 1.00 0.99 1.00 120
accuracy 0.96 3360
macro avg 0.97 0.96 .96 3360
weighted avg 0.97 8.96 0.96 3368

Ui Ul

Sl e dpedl sl e oy O 2350 Sy D ko 885 e Lhoa ool (55 LS
Ailien GBI o s ol o L 53550 IS 35 0 Bl 53 CNN g5 0
«number of layers wlilal sue) s34xw hyperparameters i856 wladas e G5 dazay
ool & g5 (dropouts b il dab S dnumber of feature maps <l el b3l - sue
BCE I Iy W CH IO K PC] U PR PN T W P A V) -(-..z «batch normalization
https://github.com/Hassan-AlHajri/Image- La 5,801 &5, Shsloy . Sledl Slrdsas

classification-for-Arabic-handwriting-character

:Janoll

https://medium.com/@hass.9964/image-classification-for-arabic-handwritten-
character-64209a7aba9d



https://github.com/Hassan-AlHajri/Image-classification-for-Arabic-handwriting-character
https://github.com/Hassan-AlHajri/Image-classification-for-Arabic-handwriting-character
https://medium.com/@hass.9964/image-classification-for-arabic-handwritten-character-64209a7aba9d
https://medium.com/@hass.9964/image-classification-for-arabic-handwritten-character-64209a7aba9d

137 | oelinall 2184llg du pell Gé L

Keras Tuner with dwujc)l MNIST o Keras Tuner (15

Arabic MNIST
ele ! al il

import pandas as pd

import numpy as npimport tensorflow as tf

from tensorflow import kerasfrom tensorflow.keras.layers import
Dropout, BatchNormalization,Conv2D,MaxPooling2D, Dense,Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.datasets import cifarlO

from tensorflow.keras import regularizers

from keras import callbacks

from sklearn.preprocessing import StandardScaler

from keras.models import Sequentialfrom kerastuner import
RandomSearch

from kerastuner.engine.hyperparameters import HyperParameters
from tensorflow.keras.optimizers import Adam

'pip install keras-tunerimport matplotlib.pyplot as plt

import seaborn as sns
bl dcgono Jroni

o)) 5,0 2L 85500 99995 (28 x 28) Loy 59,999 s UL s sazes (6 5250
! Jase 2ol

X train=pd.read csv("/kaggle/input/ahddl/Arabic Handwritten Digits
Dataset CSV/csvTrainImages 60k x

784.csv")y train=pd.read csv("/kaggle/input/ahddl/Arabic
Handwritten Digits Dataset CSV/csvTrainLabel 60k x

l.csv")X test=pd.read csv("/kaggle/input/ahddl/Arabic Handwritten
Digits Dataset CSV/csvTestImages 10k x

784.csv") .valuesy test=pd.read csv("/kaggle/input/ahddl/Arabic
Handwritten Digits Dataset CSV/csvTestLabel 10k x 1l.csv")

X train

0 01 02 03 04 05 0.6 07 08 09 .. 0486 0487 0488 0.489 0.490 0491 0.492 0493 0.494 0.495


https://www.kaggle.com/datasets/mloey1/ahdd1

dw )l MNIST &o Keras Tuner (15 138

(LU ] 315 ae 784 6Lis] J] (6350 Lon « oS (28 x 28) 784 e 3,500 IS 5555

a ol ol y Ul oy
X train=X train.values
y _train=y train.values
labels = {O : "O", 1: "™1", 2: "2", 3: "3", 4. "4",
5: "5", 6: "e", 7: "7, 8: "8", 9: "9"}
plt.figure (figsize=(10,10))
for i in range (25):
plt.subplot (5,5,1i+1)
plt.xticks ([])
plt.yticks ([])
plt.grid(False)
plt.imshow (X train[i].reshape ((28,28)))
plt.title('Label is {label}'.format (label=y train[i]))
plt.show ()

Label 1s [1] Label is [2] Label is [3] Label is [4] Label is [5]

Label is [6] Label is [7] Label is [B] Label is [9] Label is [0]

L

Label is [1] Label 1s [2] Label i1s [3] Label 1s [4] Label is [5]

Label is [6] Label 1s [7] Label i1s [8] Label 1s [9] Label is [0]

Label is [1] Label is [2] Label is [3] Label is [4] Label is [5]




139 | oelinall 2184llg du pell Gé L

JuAiill éalelg puaa il
o b Conv2D oY Lhsles salels ool old o bokie gl K20 CNN Ol
SV del, B 5an08

X train = X _train / 255
X test = X test / 255X train = X train.reshape(-1,28,28,1)
X test = X test.reshape(-1,28,28,1)

daiol
| CNN = (i) 2 jal

#Early stopping
early stopping = callbacks.EarlyStopping (
monitor='val loss',
min delta=0.001, # minimium amount of change to count as an
improvement
patience=5, # how many epochs to wait before stopping
restore best weights=True,
)model=Sequential ()
model.add (Conv2D (32, kernel size=(3,3),activation='relu', input shape
=(28,28,1)))
model.add (MaxPooling2D (pool size=(2,
2) ,strides=(2,2)))model.add(Conv2D (32, kernel size=(3,3),activation=
'relu'))
model.add (MaxPooling2D (pool size=(2,
2),strides=(2,2)))model.add (Flatten())
model.add (Dense (16,activation="relu'))
model.add (Dense (10, activation="'softmax"'))%$%time
model.compile (optimizer="adam', loss="'sparse categorical crossentrop
y',metrics="'accuracy')model.fit (X train,y train,validation split=0.
2,epochs=20,batch size=64,callbacks=[early stopping])

2022-87-22 19:
750/758 [

I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8805
] - 18s 4ms/step - loss: ©.2116 - accuracy: 8.9384 - val_loss: 8.8838 - val_accuracy: 8.9766

- 3s 4ms/step - loss: ©.8489 - accuracy: ©.9861 - val_loss: @.8583 - val_accuracy: 8.9838

- 25 3ms/step - loss: ©.8317 - accuracy: 0.9918 - val_loss: 0.8361 - val_accuracy: 8.9895

- 3s 4ms/step - loss: 8.8257 - - val_loss: 8.0458 - val_accuracy: 8.9867
- 2s 3ms/step - loss: ©.8211 - - val_loss: 8.8371 - val_accuracy: ©.9886
- 3s 4ms/step - loss: 8.0180 - accuracy: ©.9945 - val_loss: 0.8328 - val_accuracy: ©.9895
- 2s 3ms/step - loss: ©.0164 - accuracy: ©.9958 - val_loss: 8.8374 - val_accuracy: 8.9893

- 25 3ms/step - loss: ©.0149 - accura - val_loss: 8.8381 - val_accuracy: ©.9891

=] - 2s 3ms/step - loss: 8.8121 - accuracy - val_loss: 8.8369 - val_accuracy: 0.9880
- 2s 3ms/step - loss: ©.0107 - accuracy: ©.9965 - val_loss: ©.8363 - val_accuracy: 8.9908
- 3s 4ms/step - loss: ©.80929 - accuracy: ©.9968 - val_loss: 0.8415 - val_accuracy: 8.9892

1: 38.7 s

&3904l o8]
model.evaluate (X test,y test)Output:
313/313 [ ] - 1s 2ms/step -
loss: 0.0382 - accuracy: 0.9880




dw 4cJIMNIST &o Keras Tuner (15 140

Keras Tuner plaaiwl Groc)l pdcidl culodco hia-(U) £ jall
learning ol Jusss learning rate sl sl oz s kernel size S5l sua) Jadl docdl doss

.Keras Tuner f‘br.'l.w\." rate

import keras tuner as kt
hp = kt.HyperParameters()def build model (hp) :
model = keras.Sequential ([
keras.layers.Conv2D (
filters=hp.Int('conv_ 1 filter', min value=32,
max value=128, step=16),
kernel size=hp.Choice('conv_1 kernel', values = [3,5]),
activation='relu',
input shape=(28,28,1)
),
keras.layers.Dropout (0.2),
keras.layers.Conv2D (
filters=hp.Int('conv 2 filter', min value=32, max value=64,
step=16),
kernel size=hp.Choice('conv_ 2 kernel', values = [3,5]),
activation='relu'
),

keras.layers.Dropout (0.2),

keras.layers.Flatten(),
keras.layers.Dense (
units=hp.Int('dense 1 units', min value=32, max value=128,
step=16),
activation="'relu'
),
keras.layers.Dense (10, activation='softmax')

1)

model.compile (optimizer=tf.optimizers.Adam(hp.Choice('learning rate
', values=[le-2, 1le-31)),
loss='sparse categorical crossentropy',
metrics=['accuracy'])

return model

(;Ig.LLLr_J"‘ l&adl

tuner search=RandomSearch (build model,
objective='val accuracy',

max trials=5,directory='output',project name="Arabic MNIST") 3%time
tuner search.search(X train,y train,epochs=3,validation split=0.2)0
utputTrial 5 Complete [00h 00m 24s]

val accuracy: 0.9894166588783264

Best val accuracy So Far: 0.9911666512489319

Total elapsed time: 00h 02m 15s

CPU times: user lmin 52s, sys: 9.11 s, total: 2min 1s
Wall time: 2min 15s



141 | oelinall 2184llg du pell Gé L

Slodcoll JAsi plaaiwl gagod! huA
Ly ol CNIN 23 503 Gradl ol ledins Lo il Juadl ko Lol Loy
model=tuner search.get best models (num models=1) [0]

eigoll i lo

model.summary () Output:Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 96) 960
dropout (Dropout) (None, 26, 26, 96) 0
conv2d 1 (Conv2D) (None, 22, 22, 64) 153664
dropout 1 (Dropout) (None, 22, 22, 64) 0
flatten (Flatten) (None, 30976) 0

dense (Dense) (None, 96) 2973792
dense 1 (Dense) (None, 10) 970

Total params: 3,129,386
Trainable params: 3,129,386
Non-trainable params: 0

23g.oiJl doillo
model.fit (X train, y train, epochs=10, validation split=0.1,
initial epoch=3)

@390l oL67

Un4Jlg 68aJ1 (i)
model.evaluate (X test,y test)Output:
313/313 [ ] - 1s 2ms/step -
loss: 0.0867 - accuracy: 0.9891




dw 4cJIMNIST &o Keras Tuner (15 142

dlijlldsgano ()

85 15 JI 0 catas (3Lad gad ¢

W JoJ
Ao Slanl] SIS Lo 335 clrd gad Jlas L o 1 SVl o 03

:Janoll

https://medium.com/@ebrahimhagbhatti516/keras-tuner-with-arabic-mnist-
303a9c57c48a



https://medium.com/@ebrahimhaqbhatti516/keras-tuner-with-arabic-mnist-303a9c57c48a
https://medium.com/@ebrahimhaqbhatti516/keras-tuner-with-arabic-mnist-303a9c57c48a

Aranic

Al

Arabic Models Solved with Machine ond Deep Leaming

By: Dr. Alaa Taima




